Suppr超能文献

通过共价有机框架的孔纳米限域实现单分子检测用于表面增强拉曼散射

Single-Molecule Detection via Pore Nanoconfinement of Covalent Organic Frameworks for Surface-Enhanced Raman Scattering.

作者信息

Lv Mengya, Wu Xiao, Wang Wen, Han Dandan, Chen Sheng, Hu Yifan, Zhang Qidong, Wang Qiyan, Wei Ronghan

机构信息

College of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, Henan, China.

Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key Laboratory of Materials Physics, Ministry of Education, and School of Physics, Zhengzhou University, Zhengzhou 450052, Henan, China.

出版信息

ACS Sens. 2025 Mar 28;10(3):1778-1787. doi: 10.1021/acssensors.4c02391. Epub 2025 Mar 13.

Abstract

Surface-enhanced Raman scattering (SERS) offers significant advantages for single-molecule detection. However, stochastic molecular motion makes it challenging to consistently capture signals from single-molecule binding events, particularly in complex environments. Herein, we propose a novel SERS system via the pore nanoconfinement effect of covalent organic frameworks (COFs) to achieve reliable single-molecule detection. The self-assembled COF thin films on SERS metal substrates (Au/Ag) create a nanogap of 3 nm, allowing electric field enhancement. By precise tuning of the COF shell thickness, a molecular-scale pore volume is formed, effectively trapping individual molecules from molecular aggregates. Furthermore, the strong intermolecular forces within the COF pores significantly enhance the residence time of individual molecules, thereby increasing the probability of detecting single-molecule binding events. This innovative approach ensures consistent and reliable SERS single-molecule detection in complex mixtures, paving the way for advanced applications in biochemical sensing and diagnostics.

摘要

表面增强拉曼散射(SERS)在单分子检测方面具有显著优势。然而,随机的分子运动使得持续捕获单分子结合事件的信号具有挑战性,尤其是在复杂环境中。在此,我们通过共价有机框架(COF)的孔纳米限域效应提出了一种新型SERS系统,以实现可靠的单分子检测。SERS金属基底(Au/Ag)上自组装的COF薄膜产生3纳米的纳米间隙,实现电场增强。通过精确调节COF壳层厚度,形成分子尺度的孔体积,有效捕获分子聚集体中的单个分子。此外,COF孔内强大的分子间力显著延长了单个分子的停留时间,从而增加了检测单分子结合事件的概率。这种创新方法确保了在复杂混合物中进行一致且可靠的SERS单分子检测,为生化传感和诊断的先进应用铺平了道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验