Suppr超能文献

基于偏最小二乘法的功效分析

Toward Power Analysis for Partial Least Squares-Based Methods.

作者信息

Andreella Angela, Finos Livio, Scarpa Bruno, Stocchero Matteo

机构信息

Department of Economics and Management, University of Trento, Trento, Italy.

Department of Statistical Sciences, University of Padova, Padova, Italy.

出版信息

Biom J. 2025 Apr;67(2):e70050. doi: 10.1002/bimj.70050.

Abstract

In recent years, power analysis has become widely used in applied sciences, with the increasing importance of the replicability issue. When distribution-free methods, such as partial least squares (PLS)-based approaches, are considered, formulating power analysis is challenging. In this study, we introduce the methodological framework of a new procedure for performing power analysis when PLS-based methods are used. Data are simulated by the Monte Carlo method, assuming the null hypothesis of no effect is false and exploiting the latent structure estimated by PLS in the pilot data. In this way, the complex correlation data structure is explicitly considered in power analysis and sample size estimation. The paper offers insights into selecting test statistics for the power analysis procedure, comparing accuracy-based tests and those based on continuous parameters estimated by PLS. Simulated and real data sets are investigated to show how the method works in practice.

摘要

近年来,随着可重复性问题的重要性日益增加,功效分析在应用科学中得到了广泛应用。当考虑使用无分布方法,如基于偏最小二乘法(PLS)的方法时,制定功效分析具有挑战性。在本研究中,我们介绍了一种在使用基于PLS的方法时进行功效分析的新程序的方法框架。数据通过蒙特卡罗方法进行模拟,假设无效应的零假设为假,并利用PLS在先导数据中估计的潜在结构。通过这种方式,在功效分析和样本量估计中明确考虑了复杂的相关数据结构。本文提供了有关为功效分析程序选择检验统计量的见解,比较了基于准确性的检验和基于PLS估计的连续参数的检验。通过对模拟数据集和真实数据集的研究,展示了该方法在实际中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f695/11905696/e4797e15622e/BIMJ-67-e70050-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验