Suppr超能文献

RadLex与SNOMED CT整合:一项放射学分类标准化的试点研究。

RadLex and SNOMED CT integration: a pilot study for standardising radiology classification.

作者信息

Marquis Merit, Bossenko Igor, Ross Peeter

机构信息

Tallinn University of Technology, Tallinn, Estonia.

出版信息

Insights Imaging. 2025 Mar 13;16(1):58. doi: 10.1186/s13244-025-01935-5.

Abstract

BACKGROUND

Effective communication and information exchange across diverse platforms are critical in healthcare data systems. However, the presence of multiple coding systems and varying standards creates discrepancies and misalignments, highlighting the need for innovative solutions to address these challenges.

OBJECTIVE

The study aimed to develop a technical and semantic interoperability method specifically for radiology procedures, utilising the terminology management tool TermX to facilitate efficient data exchange and utilisation in healthcare.

RESULTS

The study resulted in a revised RadLex data model using SNOMED CT, accompanied by a mapping guide and a classification system for X-ray and angiography procedures. This classification system consists of nineteen distinct properties, each defined by specific value sets derived from SNOMED CT terminology. A total of 380 concepts were utilised to describe the 622 procedures examined comprehensively.

CONCLUSION

Through twelve design cycles involving in-depth analysis and iterative refinement, the mapping of angiography and X-ray procedures was successfully achieved, culminating in the creation and validation of a universal model that enhances both primary and secondary data collection. The efficacy and innovation of this system pave the way for further advancements in healthcare interoperability.

CRITICAL RELEVANCE STATEMENT

The innovative integration achieved in this study for standardising radiology classification promises to improve data management practices and enhance patient care outcomes through increased interoperability within the healthcare sector.

KEY POINTS

A universal radiology procedure model to enhance capture would be valuable. A tool to facilitate technical and semantic interoperability for efficient data exchange in healthcare was created. This system could pave the way for futher advancements in healthcare interoperability.

摘要

背景

在医疗数据系统中,跨不同平台进行有效的沟通和信息交换至关重要。然而,多种编码系统和不同标准的存在导致了差异和不一致,凸显了需要创新解决方案来应对这些挑战。

目的

本研究旨在开发一种专门针对放射学程序的技术和语义互操作性方法,利用术语管理工具TermX促进医疗保健中高效的数据交换和利用。

结果

该研究产生了一个使用SNOMED CT修订的RadLex数据模型,以及一个映射指南和一个用于X射线和血管造影程序的分类系统。这个分类系统由19个不同的属性组成,每个属性由从SNOMED CT术语派生的特定值集定义。总共使用了380个概念来全面描述所检查的622个程序。

结论

通过十二个涉及深入分析和迭代完善的设计周期,成功实现了血管造影和X射线程序的映射,最终创建并验证了一个通用模型,该模型增强了一级和二级数据收集。该系统的有效性和创新性为医疗互操作性的进一步发展铺平了道路。

关键相关声明

本研究中实现的用于标准化放射学分类的创新整合有望通过提高医疗保健部门内的互操作性来改善数据管理实践并提高患者护理结果。

要点

一个增强捕获的通用放射学程序模型将是有价值的。创建了一个工具来促进技术和语义互操作性,以实现医疗保健中高效的数据交换。该系统可为医疗互操作性的进一步发展铺平道路。

相似文献

本文引用的文献

1
TermX: A Game Changer in the Healthcare Interoperability.TermX:医疗互操作性的游戏规则改变者。
Stud Health Technol Inform. 2024 Aug 22;316:88-89. doi: 10.3233/SHTI240352.
5
Adding Value in Radiology Reporting.在放射科报告中增加价值。
J Am Coll Radiol. 2019 Sep;16(9 Pt B):1292-1298. doi: 10.1016/j.jacr.2019.05.042.
9

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验