Suppr超能文献

不确定性卷积神经网络:提升医学图像分类性能的途径。

Uncertainty CNNs: A path to enhanced medical image classification performance.

作者信息

Papageorgiou Vasileios E, Petmezas Georgios, Dogoulis Pantelis, Cordy Maxime, Maglaveras Nicos

机构信息

Department of Mathematics, Aristotle University of Thessaloniki, Thessaloniki, Greece.

School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece.

出版信息

Math Biosci Eng. 2025 Feb 20;22(3):528-553. doi: 10.3934/mbe.2025020.

Abstract

The automated detection of tumors using medical imaging data has garnered significant attention over the past decade due to the critical need for early and accurate diagnoses. This interest is fueled by advancements in computationally efficient modeling techniques and enhanced data storage capabilities. However, methodologies that account for the uncertainty of predictions remain relatively uncommon in medical imaging. Uncertainty quantification (UQ) is important as it helps decision-makers gauge their confidence in predictions and consider variability in the model inputs. Numerous deterministic deep learning (DL) methods have been developed to serve as reliable medical imaging tools, with convolutional neural networks (CNNs) being the most widely used approach. In this paper, we introduce a low-complexity uncertainty-based CNN architecture for medical image classification, particularly focused on tumor and heart failure (HF) detection. The model's predictive (aleatoric) uncertainty is quantified through a test-set augmentation technique, which generates multiple surrogates of each test image. This process enables the construction of empirical distributions for each image, which allows for the calculation of mean estimates and credible intervals. Importantly, this methodology not only provides UQ, but also significantly improves the model's classification performance. This paper represents the first effort to demonstrate that test-set augmentation can significantly improve the classification performance of medical images. The proposed DL model was evaluated using three datasets: (a) brain magnetic resonance imaging (MRI), (b) lung computed tomography (CT) scans, and (c) cardiac MRI. The low-complexity design of the model enhances its robustness against overfitting, while it is also easily re-trainable in case out-of-distribution data is encountered, due to the reduced computational resources required by the introduced architecture.

摘要

在过去十年中,由于对早期准确诊断的迫切需求,利用医学成像数据自动检测肿瘤已引起了广泛关注。计算效率高的建模技术的进步和增强的数据存储能力推动了这种兴趣。然而,在医学成像中,考虑预测不确定性的方法仍然相对较少。不确定性量化(UQ)很重要,因为它有助于决策者评估他们对预测的信心,并考虑模型输入中的变异性。已经开发了许多确定性深度学习(DL)方法作为可靠的医学成像工具,其中卷积神经网络(CNN)是使用最广泛的方法。在本文中,我们介绍了一种基于低复杂度不确定性的CNN架构用于医学图像分类,特别专注于肿瘤和心力衰竭(HF)检测。该模型的预测(偶然)不确定性通过测试集增强技术进行量化,该技术为每个测试图像生成多个替代图像。这个过程能够为每个图像构建经验分布,从而可以计算均值估计和可信区间。重要的是,这种方法不仅提供了不确定性量化,还显著提高了模型的分类性能。本文首次证明了测试集增强可以显著提高医学图像的分类性能。所提出的深度学习模型使用三个数据集进行评估:(a)脑磁共振成像(MRI),(b)肺部计算机断层扫描(CT),以及(c)心脏MRI。该模型的低复杂度设计增强了其对过拟合的鲁棒性,同时由于引入的架构所需的计算资源减少,在遇到分布外数据时也很容易重新训练。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验