Suppr超能文献

在计算机断层扫描中使用卷积神经网络诊断肺癌

Using Convoluted Neural Networks in Diagnosing Lung Cancer on Computed Tomography Scans.

作者信息

Cîmpeanu Ovidiu, Liliac Ilona Mihaela, Mămuleanu Mădălin, Voinea Ștefan-Vlad, Olteanu Mihai, Streba Costin-Teodor

机构信息

Doctoral School, University of Medicine and Pharmacy of Craiova, Romania.

Department of Histology, University of Medicine and Pharmacy of Craiova, Romania.

出版信息

Curr Health Sci J. 2025 Jan-Mar;51(1):87-95. doi: 10.12865/CHSJ.51.01.09. Epub 2025 Mar 31.

Abstract

INTRODUCTION

Lung cancer represents a major health issue of the modern world, accounting for both most new cases and highest mortality rates worldwide. Early diagnosis and treatment remain essential in managing the disease; therefore, developing novel computer-assisted tools for processing large quantities of imaging data can prove indispensable. Our aim was to develop a novel convoluted neural network (CNN) to classify lung computed tomography (CT) images of suspect nodules.

MATERIALS AND METHODS

After obtaining ethical clearance, we included consenting patients with a lung mass found on a chest radiography, visible lung tumor on computer tomography and positive pathology or follow-up. After data augmentation, we trained a deep learning model to classify input images into two classes, malignant or benign. We evaluated the model by calculating accuracy, recall and precision.

RESULTS

We successfully enrolled 176 patients from a total of 192 cases. Most were male (135 cases, accounting for 76.7%) and came from urban areas (111 cases, 63%). Most tumors were found on the right lung (103 cases). The model performed well on an imbalanced dataset, with recall values at 79.31%, while precision reached 62.16%, a training accuracy of 76.34% and a validation accuracy of 77.01%.

CONCLUSIONS

We proved that a CNN model can easily be implemented on regular hardware to successfully classify malignant and benign lung lesions on CT images. Future CNN implementations can greatly improve the imaging diagnosis of lung lesions; however, the physicians should always decide the medical management.

摘要

引言

肺癌是现代社会的一个重大健康问题,在全球范围内,它的新增病例数和死亡率均位居各类疾病之首。早期诊断和治疗对于控制该疾病仍然至关重要;因此,开发新型计算机辅助工具来处理大量成像数据可能是必不可少的。我们的目标是开发一种新型卷积神经网络(CNN),用于对可疑结节的肺部计算机断层扫描(CT)图像进行分类。

材料与方法

在获得伦理批准后,我们纳入了在胸部X光检查中发现肺部有肿块、计算机断层扫描可见肺部肿瘤且病理检查呈阳性或有随访结果的患者,并获得了他们的同意。在进行数据增强后,我们训练了一个深度学习模型,将输入图像分为恶性或良性两类。我们通过计算准确率、召回率和精确率来评估该模型。

结果

我们从总共192例病例中成功招募了176名患者。大多数患者为男性(135例,占76.7%),且来自城市地区(111例,占63%)。大多数肿瘤位于右肺(103例)。该模型在不平衡数据集上表现良好,召回率为79.31%,精确率达到62.16%,训练准确率为76.34%,验证准确率为77.01%。

结论

我们证明了CNN模型可以很容易地在常规硬件上实现,以成功地对CT图像上的恶性和良性肺部病变进行分类。未来的CNN应用可以极大地改善肺部病变的成像诊断;然而,医生应始终决定医疗管理方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a941/12264995/5a4476e163a7/CHSJ-51-01-87-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验