Suppr超能文献

针对新兴呼吸道疾病的人工智能驱动的健康分析:以也门患者使用新冠疫情数据为例的研究。

AI-driven health analysis for emerging respiratory diseases: A case study of Yemen patients using COVID-19 data.

作者信息

Alzahrani Saleh I, Yafooz Wael M S, Aljamaan Ibrahim A, Alwaleedi Ali, Al-Hariri Mohammed, Saleh Gameel

机构信息

Biomedical Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, PO box 1982, Dammam 31451, Saudi Arabia.

Computer Science Department, Taibah University, Saudi Arabia.

出版信息

Math Biosci Eng. 2025 Feb 24;22(3):554-584. doi: 10.3934/mbe.2025021.

Abstract

In low-income and resource-limited countries, distinguishing COVID-19 from other respiratory diseases is challenging due to similar symptoms and the prevalence of comorbidities. In Yemen, acute comorbidities further complicate the differentiation between COVID-19 and other infectious diseases. We explored the use of AI-powered predictive models and classifiers to enhance healthcare preparedness by forecasting respiratory disease trends using COVID-19 data. We developed mathematical models based on autoregressive (AR), moving average (MA), ARMA, and machine and deep learning algorithms to predict daily confirmed deaths. Statistical models were trained on 80% of the data and tested on the remaining 20%, with predicted results compared to actual values. The ARMA model demonstrated promising performance. Additionally, eight machine learning (ML) classifiers and deep learning (DL) models were utilized to identify COVID-19 severity indicators. Among the ML classifiers, the Decision Tree (DT) achieved the highest accuracy at 74.70%, followed closely by Random Forest (RF) at 74.66%. DL models showed comparable accuracy scores, around 70%. In terms of AUC-ROC, the kernel Support Vector Machine (SVM) outperformed others, achieving 71% accuracy, with precision, recall, F-measure, and area under the curve values of 0.7, 0.75, 0.59, and 0.72, respectively. These findings underscore the potential of AI-driven health analysis to optimize resource allocation and enhance forecasting for respiratory diseases.

摘要

在低收入和资源有限的国家,由于症状相似以及合并症的普遍存在,区分新冠病毒病(COVID-19)与其他呼吸道疾病具有挑战性。在也门,急性合并症使区分COVID-19与其他传染病的工作更加复杂。我们探索使用人工智能驱动的预测模型和分类器,通过利用COVID-19数据预测呼吸道疾病趋势来加强医疗准备。我们基于自回归(AR)、移动平均(MA)、自回归移动平均(ARMA)以及机器学习和深度学习算法开发了数学模型,以预测每日确诊死亡人数。统计模型在80%的数据上进行训练,并在其余20%的数据上进行测试,将预测结果与实际值进行比较。ARMA模型表现出良好的性能。此外,还利用了八个机器学习(ML)分类器和深度学习(DL)模型来识别COVID-19严重程度指标。在ML分类器中,决策树(DT)的准确率最高,为74.70%,紧随其后的是随机森林(RF),准确率为74.66%。DL模型的准确率得分相近,约为70%。在曲线下面积(AUC-ROC)方面,核支持向量机(SVM)表现优于其他模型,准确率达到71%,精确率、召回率、F值和曲线下面积分别为0.7、0.75、0.59和0.72。这些发现强调了人工智能驱动的健康分析在优化资源分配和加强呼吸道疾病预测方面的潜力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验