文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

评估激光雷达技术用于精确测量树木指标和碳固存。

Evaluating LiDAR technology for accurate measurement of tree metrics and carbon sequestration.

作者信息

Tantrairatn Suradet, Pichitkul Auraluck, Petcharat Nutchanan, Karaked Pawarut, Ariyarit Atthaphon

机构信息

School of Mechanical Engineering, Institute of Engineering, Suranaree University of Technology, 111, MahaWitthayalai Rd, Suranari, Mueang Nakhon Ratchasima District, Nakhon Ratchasima 30000, Thailand.

Institute of Research and Development, Suranaree University of Technology, Maha Witthayalai Rd, Suranari, Mueang Nakhon Ratchasima District, Nakhon Ratchasima 30000, Thailand.

出版信息

MethodsX. 2025 Feb 18;14:103237. doi: 10.1016/j.mex.2025.103237. eCollection 2025 Jun.


DOI:10.1016/j.mex.2025.103237
PMID:40083658
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11903942/
Abstract

Carbon credits play a crucial role in mitigating climate change by incentivizing reductions in greenhouse gas emissions and providing a measurable way to balance carbon dioxide output, fostering sustainable environmental practices. However, conventional methods of measuring carbon credits are often time-consuming and lack accuracy. This research examines carbon credit measurement in a 40 × 40 rubber forest, evaluating the effectiveness of LiDAR technology in measuring Tree Height (TH) and Diameter at Breast Height (DBH) using a dataset of 100 samples. The method is as follows:•Three measurement methods were compared: conventional techniques using diameter tape and hypsometers, manual LiDAR measurements, and automated measurements using 3D Forest Inventory software with the CloudCompare plugin.•The Mean Absolute Percentage Error (MAPE) for carbon sequestration was 4.276 % for manual LiDAR measurements and 6.901 % for the 3D Forest Inventory method.•Root Mean Square Error (RMSE) values for carbon sequestration using LiDAR measurements were 33.492 kgCOe, whereas RMSE values for the 3D Forest Inventory method were significantly higher. This indicates that manual LiDAR measurements are more accurate and consistent, while the higher RMSE in the 3D Forest Inventory method reflects greater variability and potential estimation errors. The findings suggest that LiDAR technology, particularly manual measurements, provides a reliable and efficient alternative for carbon sequestration assessments in forest management.

摘要

碳信用额度通过激励减少温室气体排放并提供一种可衡量的方式来平衡二氧化碳排放量,从而在缓解气候变化方面发挥着至关重要的作用,促进了可持续的环境实践。然而,传统的碳信用额度测量方法通常耗时且缺乏准确性。本研究考察了40×40橡胶林中的碳信用额度测量,使用100个样本的数据集评估了激光雷达技术在测量树高(TH)和胸径(DBH)方面的有效性。方法如下: •比较了三种测量方法:使用围尺和测高仪的传统技术、手动激光雷达测量以及使用带有CloudCompare插件的3D森林资源清查软件的自动测量。 •手动激光雷达测量的碳固存平均绝对百分比误差(MAPE)为4.276%,3D森林资源清查方法的为6.901%。 •使用激光雷达测量的碳固存均方根误差(RMSE)值为33.492 kgCOe,而3D森林资源清查方法的RMSE值显著更高。这表明手动激光雷达测量更准确且一致,而3D森林资源清查方法中较高的RMSE反映出更大的变异性和潜在估计误差。研究结果表明,激光雷达技术,特别是手动测量,为森林管理中的碳固存评估提供了一种可靠且高效的替代方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/d664c8b73919/gr20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/1f61e5b121e9/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/899d4ad8303b/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/24cc6242c17f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/5138f240b880/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/2f382976ded9/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/43c7069baae1/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/6640fcce4e42/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/3f212947b0ab/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/2e67cd6f808d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/7766aed12418/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/d680bd381260/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/d59fa93ef05e/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/f287688e056e/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/ea84c1510637/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/536e527c1f52/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/1f1e38bd9a83/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/6d1090dc2ce0/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/f8a52cd43b5f/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/1457ba406ce4/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/ece22a81433b/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/d664c8b73919/gr20.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/1f61e5b121e9/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/899d4ad8303b/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/24cc6242c17f/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/5138f240b880/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/2f382976ded9/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/43c7069baae1/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/6640fcce4e42/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/3f212947b0ab/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/2e67cd6f808d/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/7766aed12418/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/d680bd381260/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/d59fa93ef05e/gr11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/f287688e056e/gr12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/ea84c1510637/gr13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/536e527c1f52/gr14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/1f1e38bd9a83/gr15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/6d1090dc2ce0/gr16.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/f8a52cd43b5f/gr17.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/1457ba406ce4/gr18.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/ece22a81433b/gr19.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1775/11903942/d664c8b73919/gr20.jpg

相似文献

[1]
Evaluating LiDAR technology for accurate measurement of tree metrics and carbon sequestration.

MethodsX. 2025-2-18

[2]
Measuring tree diameter using a LiDAR-equipped smartphone: a comparison of smartphone- and caliper-based DBH.

Environ Monit Assess. 2023-5-16

[3]
Impact of data model and point density on aboveground forest biomass estimation from airborne LiDAR.

Carbon Balance Manag. 2017-12

[4]
Comparison of forest stand height interpolation of GEDI and ICESat-2 LiDAR measurements over tropical and sub-tropical forests in India.

Environ Monit Assess. 2022-11-4

[5]
A universal airborne LiDAR approach for tropical forest carbon mapping.

Oecologia. 2011-10-28

[6]
Using Lidar and Radar measurements to constrain predictions of forest ecosystem structure and function.

Ecol Appl. 2011-6

[7]
A handheld device for measuring the diameter at breast height of individual trees using laser ranging and deep-learning based image recognition.

Plant Methods. 2021-6-25

[8]
[Estimating individual tree aboveground biomass of the mid-subtropical forest using airborne LiDAR technology].

Ying Yong Sheng Tai Xue Bao. 2014-11

[9]
Geometric Feature Characterization of Apple Trees from 3D LiDAR Point Cloud Data.

J Imaging. 2024-12-31

[10]
Combined effect of pulse density and grid cell size on predicting and mapping aboveground carbon in fast-growing Eucalyptus forest plantation using airborne LiDAR data.

Carbon Balance Manag. 2017-12

引用本文的文献

[1]
Extracting rubber tree parameters and estimating carbon storage using airborne LiDAR.

PLoS One. 2025-8-22

[2]
Smartphone LiDAR for urban forest carbon assessment: A comparative study with traditional methods.

MethodsX. 2025-6-27

本文引用的文献

[1]
Carbon neutrality: a comprehensive bibliometric analysis.

Environ Sci Pollut Res Int. 2023-4

[2]
Psychology of Climate Change.

Annu Rev Psychol. 2023-1-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索