Dzikonski Dustin, Zamboni Riccardo, Bandyopadhyay Aniket, Paul Deepthi, Wedlich-Söldner Roland, Denz Cornelia, Imbrock Jörg
Institute of Applied Physics, University of Münster, Corrensstr. 2, 48149, Münster, Germany.
Institute of Cell Dynamics and Imaging, University of Münster, Von Esmarch Str. 56, 48149, Münster, Germany.
Biomed Microdevices. 2025 Mar 14;27(1):12. doi: 10.1007/s10544-025-00739-0.
Total internal reflection fluorescence (TIRF) microscopy is a powerful imaging technique that visualizes the outer surface of specimens in close proximity to a substrate, yielding crucial insights in cell membrane compositions. TIRF plays a key role in single-cell studies but typically requires chemical fixation to ensure direct contact between the cell membrane and substrate, which can compromise cell viability and promote clustering. In this study, we present a microfluidic device with structures designed to trap single yeast cells and fix them in direct contact with the substrate surface to enable TIRF measurements on the cell membrane. The traps are fabricated using two-photon polymerization, allowing high-resolution printing of intricate structures that encapsulate cells in all three dimensions while maintaining exposure to the flow within the device. Our adaptable trap design allows us to reduce residual movement of trapped cells to a minimum while maintaining high trapping efficiencies. We identify the optimal structure configuration to trap single yeast cells and demonstrate that trapping efficiency can be tuned by modifying cell concentration and injection methods. Additionally, by replicating the cell trap design with soft hydrogel materials, we demonstrate the potential of our approach for further single-cell studies. The authors have no relevant financial or non-financial interests to disclose and no competing interests to declare.
全内反射荧光(TIRF)显微镜是一种强大的成像技术,可对紧邻基质的标本外表面进行可视化,从而深入了解细胞膜组成。TIRF在单细胞研究中起着关键作用,但通常需要化学固定以确保细胞膜与基质直接接触,这可能会损害细胞活力并促进聚集。在本研究中,我们展示了一种微流控装置,其结构设计用于捕获单个酵母细胞并将其固定在与基质表面直接接触的位置,以便对细胞膜进行TIRF测量。这些陷阱是使用双光子聚合制造的,能够高分辨率打印复杂结构,在三个维度上封装细胞,同时保持细胞与装置内流动的接触。我们适应性强的陷阱设计能够将捕获细胞的残留运动降至最低,同时保持高捕获效率。我们确定了捕获单个酵母细胞的最佳结构配置,并证明可以通过改变细胞浓度和注射方法来调整捕获效率。此外,通过用软水凝胶材料复制细胞陷阱设计,我们展示了我们的方法在进一步单细胞研究中的潜力。作者没有相关财务或非财务利益需要披露,也没有利益冲突需要声明。