Suppr超能文献

利用基于生成对抗网络的图像重建来解析对其他种族面孔的感知。

Unraveling other-race face perception with GAN-based image reconstruction.

作者信息

Shoura Moaz, Walther Dirk B, Nestor Adrian

机构信息

Department of Psychology at Scarborough, University of Toronto, 1265 Military Trail, Scarborough, ON, M1C 1A4, Canada.

Department of Psychology, University of Toronto, Toronto, Canada.

出版信息

Behav Res Methods. 2025 Mar 14;57(4):115. doi: 10.3758/s13428-025-02636-z.

Abstract

The other-race effect (ORE) is the disadvantage of recognizing faces of another race than one's own. While its prevalence is behaviorally well documented, the representational basis of ORE remains unclear. This study employs StyleGAN2, a deep learning technique for generating photorealistic images to uncover face representations and to investigate ORE's representational basis. To this end, we collected pairwise visual similarity ratings with same- and other-race faces across East Asian and White participants exhibiting robust levels of ORE. Leveraging the significant overlap in representational similarity between the GAN's latent space and perceptual representations in human participants, we designed an image reconstruction approach aiming to reveal internal face representations from behavioral similarity data. This methodology yielded hyper-realistic depictions of face percepts, with reconstruction accuracy well above chance, as well as an accuracy advantage for same-race over other-race reconstructions, which mirrored ORE in both populations. Further, a comparison of reconstructions across participant race revealed a novel age bias, with other-race face reconstructions appearing younger than their same-race counterpart. Thus, our work proposes a new approach to exploiting the utility of GANs in image reconstruction and provides new avenues in the study of ORE.

摘要

异族效应(ORE)是指识别与自己不同种族的面孔时存在的劣势。虽然其普遍性在行为学上已有充分记录,但ORE的表征基础仍不明确。本研究采用StyleGAN2(一种用于生成逼真图像的深度学习技术)来揭示面部表征,并研究ORE的表征基础。为此,我们收集了东亚和白人参与者对同种族和异族面孔的成对视觉相似性评分,这些参与者表现出强烈的ORE水平。利用生成对抗网络(GAN)的潜在空间与人类参与者感知表征之间在表征相似性上的显著重叠,我们设计了一种图像重建方法,旨在从行为相似性数据中揭示内部面部表征。这种方法产生了高度逼真的面部感知描绘,重建准确率远高于随机水平,并且同种族重建的准确率优于异族重建,这在两个人群中都反映了ORE。此外,对不同种族参与者的重建进行比较发现了一种新的年龄偏差,异族面部重建看起来比同种族的更年轻。因此,我们的工作提出了一种利用GAN进行图像重建的新方法,并为ORE的研究提供了新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验