Suppr超能文献

用于医学图像分割的交替编码器和双解码器卷积神经网络-Transformer网络

Alternate encoder and dual decoder CNN-Transformer networks for medical image segmentation.

作者信息

Zhang Lin, Guo Xinyu, Sun Hongkun, Wang Weigang, Yao Liwei

机构信息

Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, 310003, China.

Zhejiang Gongshang University, Department of Statistics and Mathematics, Hangzhou, 310018, China.

出版信息

Sci Rep. 2025 Mar 14;15(1):8883. doi: 10.1038/s41598-025-93353-2.

Abstract

Accurately extracting lesions from medical images is a fundamental but challenging problem in medical image analysis. In recent years, methods based on convolutional neural networks and Transformer have achieved great success in the medical image segmentation field. Combining the powerful perception of local information by CNNs and the efficient capture of global context by Transformer is crucial for medical image segmentation. However, the unique characteristics of many lesion tissues often lead to poor performance and most previous models failed to fully extract effective local and global features. Therefore, based on an encoder-decoder architecture, we propose a novel alternate encoder dual decoder CNN-Transformer network, AD2Former, with two attractive designs: 1) We propose alternating learning encoder can achieve real-time interaction between local and global information, allowing both to mutually guide learning. 2) We propose dual decoder architecture. The unique way of dual-branch independent decoding and fusion. To efficiently fuse different feature information from two sub-decoders during decoding, we introduce a channel attention module to reduce redundant feature information. Driven by these two designs, AD2Former demonstrates strong capture ability for target regions and fuzzy boundaries. Experiments on multi-organ segmentation and skin lesion segmentation datasets also demonstrate the effectiveness and superiority of AD2Former.

摘要

从医学图像中准确提取病变是医学图像分析中的一个基本但具有挑战性的问题。近年来,基于卷积神经网络和Transformer的方法在医学图像分割领域取得了巨大成功。将卷积神经网络对局部信息的强大感知能力与Transformer对全局上下文的高效捕捉能力相结合,对于医学图像分割至关重要。然而,许多病变组织的独特特征往往导致性能不佳,并且大多数先前的模型未能充分提取有效的局部和全局特征。因此,基于编码器-解码器架构,我们提出了一种新颖的交替编码器双解码器CNN-Transformer网络,即AD2Former,它具有两个引人注目的设计:1)我们提出的交替学习编码器可以实现局部和全局信息之间的实时交互,使两者相互引导学习。2)我们提出了双解码器架构。独特的双分支独立解码和融合方式。为了在解码过程中有效地融合来自两个子解码器的不同特征信息,我们引入了一个通道注意力模块来减少冗余特征信息。在这两个设计的驱动下,AD2Former对目标区域和模糊边界具有很强的捕捉能力。在多器官分割和皮肤病变分割数据集上的实验也证明了AD2Former的有效性和优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09dd/11909241/6ea014e66489/41598_2025_93353_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验