Suppr超能文献

用于医学图像分割的循环残差U-Net

Recurrent residual U-Net for medical image segmentation.

作者信息

Alom Md Zahangir, Yakopcic Chris, Hasan Mahmudul, Taha Tarek M, Asari Vijayan K

机构信息

University of Dayton, Department of Electrical and Computer Engineering, Dayton, Ohio, United States.

Comcast Labs, Washington, DC, United States.

出版信息

J Med Imaging (Bellingham). 2019 Jan;6(1):014006. doi: 10.1117/1.JMI.6.1.014006. Epub 2019 Mar 27.

Abstract

Deep learning (DL)-based semantic segmentation methods have been providing state-of-the-art performance in the past few years. More specifically, these techniques have been successfully applied in medical image classification, segmentation, and detection tasks. One DL technique, U-Net, has become one of the most popular for these applications. We propose a recurrent U-Net model and a recurrent residual U-Net model, which are named RU-Net and R2U-Net, respectively. The proposed models utilize the power of U-Net, residual networks, and recurrent convolutional neural networks. There are several advantages to using these proposed architectures for segmentation tasks. First, a residual unit helps when training deep architectures. Second, feature accumulation with recurrent residual convolutional layers ensures better feature representation for segmentation tasks. Third, it allows us to design better U-Net architectures with the same number of network parameters with better performance for medical image segmentation. The proposed models are tested on three benchmark datasets, such as blood vessel segmentation in retinal images, skin cancer segmentation, and lung lesion segmentation. The experimental results show superior performance on segmentation tasks compared to equivalent models, including a variant of a fully connected convolutional neural network called SegNet, U-Net, and residual U-Net.

摘要

在过去几年中,基于深度学习(DL)的语义分割方法一直保持着领先的性能。具体而言,这些技术已成功应用于医学图像分类、分割和检测任务。一种深度学习技术——U-Net,已成为这些应用中最受欢迎的技术之一。我们提出了一种循环U-Net模型和一种循环残差U-Net模型,分别命名为RU-Net和R2U-Net。所提出的模型利用了U-Net、残差网络和循环卷积神经网络的优势。使用这些提出的架构进行分割任务有几个优点。首先,残差单元有助于深度架构的训练。其次,循环残差卷积层的特征积累确保了分割任务的更好特征表示。第三,它使我们能够设计出具有相同网络参数数量的更好的U-Net架构,以实现更好的医学图像分割性能。所提出的模型在三个基准数据集上进行了测试,如视网膜图像中的血管分割、皮肤癌分割和肺部病变分割。实验结果表明,与等效模型相比,所提出的模型在分割任务上具有卓越的性能,这些等效模型包括一种名为SegNet的全连接卷积神经网络变体、U-Net和残差U-Net。

相似文献

1
Recurrent residual U-Net for medical image segmentation.用于医学图像分割的循环残差U-Net
J Med Imaging (Bellingham). 2019 Jan;6(1):014006. doi: 10.1117/1.JMI.6.1.014006. Epub 2019 Mar 27.
3
DENSE-INception U-net for medical image segmentation.基于密集卷积 Inception 的 U-Net 网络在医学图像分割中的应用
Comput Methods Programs Biomed. 2020 Aug;192:105395. doi: 10.1016/j.cmpb.2020.105395. Epub 2020 Feb 15.

引用本文的文献

4
Diabetic retinal vessel segmentation algorithm based on MA-DUNet.基于多注意力深度U型网络的糖尿病视网膜血管分割算法
Quant Imaging Med Surg. 2025 Jun 6;15(6):5258-5275. doi: 10.21037/qims-24-2267. Epub 2025 May 26.

本文引用的文献

3
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
7
SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation.SegNet:一种用于图像分割的深度卷积编解码器架构。
IEEE Trans Pattern Anal Mach Intell. 2017 Dec;39(12):2481-2495. doi: 10.1109/TPAMI.2016.2644615. Epub 2017 Jan 2.
10
Brain tumor segmentation with Deep Neural Networks.基于深度神经网络的脑肿瘤分割。
Med Image Anal. 2017 Jan;35:18-31. doi: 10.1016/j.media.2016.05.004. Epub 2016 May 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验