Shtanko Oles, Wang Derek S, Zhang Haimeng, Harle Nikhil, Seif Alireza, Movassagh Ramis, Minev Zlatko
IBM Quantum, IBM Research - Almaden, San Jose, CA, USA.
IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, NY, USA.
Nat Commun. 2025 Mar 15;16(1):2552. doi: 10.1038/s41467-025-57623-x.
Interacting many-body quantum systems and their dynamics, while fundamental to modern science and technology, are formidable to simulate and understand. However, by discovering their symmetries, conservation laws, and integrability, one can unravel their intricacies. Here, using up to 124 qubits of a fully programmable quantum computer, we uncover local conservation laws and integrability in one- and two-dimensional periodically-driven spin lattices in a regime previously inaccessible to such detailed analysis. We focus on the paradigmatic example of disorder-induced ergodicity breaking, where we first benchmark the system crossover into a localized regime through anomalies in the one-particle-density-matrix spectrum and other hallmark signatures. We then demonstrate that this regime stems from hidden local integrals of motion by faithfully reconstructing their quantum operators, thus providing a more detailed portrait of the system's integrable dynamics. Our results demonstrate a versatile strategy for extracting the hidden dynamical structure from noisy experiments on large-scale quantum computers.
相互作用的多体量子系统及其动力学虽然是现代科学技术的基础,但模拟和理解起来却极具挑战性。然而,通过发现它们的对称性、守恒定律和可积性,人们可以解开其复杂性。在此,我们使用一台完全可编程量子计算机中多达124个量子比特,在一个此前无法进行此类详细分析的区域,揭示了一维和二维周期性驱动自旋晶格中的局部守恒定律和可积性。我们聚焦于无序诱导遍历性破缺的典型例子,首先通过单粒子密度矩阵谱中的反常现象以及其他标志性特征,对系统向局域化区域的转变进行基准测试。然后,我们通过忠实地重构其量子算符,证明了该区域源于隐藏的局部运动积分,从而提供了系统可积动力学的更详细图景。我们的结果展示了一种从大规模量子计算机上的噪声实验中提取隐藏动力学结构的通用策略。