Nguyen Thuy Truong An, Dutour Raphaël, Conrard Louise, Vermeersch Marjorie, Mirgaux Manon, Perez-Morga David, Baeyens Nicolas, Bruylants Gilles, Demeestere Isabelle
Research Laboratory on Human Reproduction, Faculty of Medicine, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium.
Engineering of Molecular NanoSystems, Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium.
ACS Appl Bio Mater. 2025 Apr 21;8(4):3040-3051. doi: 10.1021/acsabm.4c01861. Epub 2025 Mar 16.
Nanoparticle technology, particularly gold nanoparticles (AuNPs), is being developed for a wide range of applications, including as a delivery system of peptides or nucleic acids (NA). Their use in precision medicine requires detailed engineering of NP functionalization to optimize their function and minimize off-target toxicity. Two main routes can be found in the literature for the attachment of NA strands to AuNPs: covalent binding via a thiol group or passive adsorption onto a specially adapted coating previously applied to the metallic core. In this latter case, the coating is often a positively charged polymer, as polyethylenimine, which due to its high positive charge can induce cytotoxicity. Here, we investigated an innovative strategy based on the initial coating of the particles using calix[4]arene macrocycles bearing polyethylene glycol chains as an interesting alternative to polyethylenimine for NA adsorption. Because any molecular modification of AuNPs may affect the cytotoxicity and cellular uptake, we compared the behavior of these AuNPs to that of particles obtained via a classical thiol covalent attachment in MCF-7 and GC-1 spg cell lines. We showed a high biocompatibility of both AuNPs-NA internalized in vitro. The difference in subcellular localization of both AuNPs-NA in MCF-7 cells compared to GC-1 spg cells suggests that their subcellular target is cell- and coating-dependent. This finding provides valuable insights for developing alternative NA delivery systems with a high degree of tunability.
纳米颗粒技术,尤其是金纳米颗粒(AuNPs),正被开发用于广泛的应用,包括作为肽或核酸(NA)的递送系统。它们在精准医学中的应用需要对纳米颗粒功能化进行详细设计,以优化其功能并将脱靶毒性降至最低。在文献中可以找到两种将NA链连接到AuNPs的主要途径:通过硫醇基团进行共价结合或被动吸附到预先应用于金属核的特殊适配涂层上。在后一种情况下,涂层通常是带正电荷的聚合物,如聚乙烯亚胺,由于其高正电荷会诱导细胞毒性。在这里,我们研究了一种创新策略,即使用带有聚乙二醇链的杯[4]芳烃大环对颗粒进行初始涂层,作为聚乙烯亚胺用于NA吸附的有趣替代物。由于AuNPs的任何分子修饰都可能影响细胞毒性和细胞摄取,我们将这些AuNPs的行为与通过经典硫醇共价连接在MCF-7和GC-1 spg细胞系中获得的颗粒的行为进行了比较。我们展示了两种体外内化的AuNPs-NA具有高生物相容性。与GC-1 spg细胞相比,两种AuNPs-NA在MCF-7细胞中的亚细胞定位差异表明它们的亚细胞靶点是细胞和涂层依赖性的。这一发现为开发具有高度可调性的替代NA递送系统提供了有价值的见解。