Kuga Noriyuki, Shirieda Katsutoshi, Hirabara Yumi, Kurogi Yusuke, Fujisaki Ryohei, Sun Lue, Morota Koichi, Moritake Takashi, Ohta Hajime
Department of Radiological Science, Faculty of Health Sciences, Junshin Gakuen University, 1-1-1 Chikushigaoka, Minami-ku, Fukuoka, 815-810, Japan.
Department of Radiological Division, Miyazaki City Tano Hospital, 1-6-2 Minamihara Tano-Cho, Miyazaki, 889-1704, Japan.
Radiol Phys Technol. 2025 Jun;18(2):439-450. doi: 10.1007/s12194-025-00893-3. Epub 2025 Mar 16.
This study addresses the growing concerns of increased radiation doses to patients resulting from the increased complexity of interventional radiology procedures. Despite the importance of dose management, few facilities use dosimetry systems to measure and control patient radiation doses. To aid in patient exposure control, this research aimed to predict the peak skin dose (PSD) using dose parameters from digital imaging and communication in medicine-radiation dose structured reports. The study focused on air kerma (K) and air kerma area product (KAP) values categorized into fixed dose (radiography and fluoroscopy) and motion dose (rotational digital subtraction angiography) for frontal and lateral biplane devices. Using single and multiple regression analysis, model equations for PSD were developed based on data from a radio-photoluminescence glass dosimeter and five dose parameters. Principal component analysis (PCA) was applied to consolidate the data, and multiple regression models were created using principal component scores. The results showed that rotational digital subtraction angiography had a minimal impact on PSD, whereas the K value demonstrated higher accuracy in predicting PSD than KAP. The inclusion of PCA in the multiple regression model further improved accuracy, with a root mean squared error of 226, confirming that PCA-enhanced models are more effective in predicting PSD.
本研究关注介入放射学程序日益复杂导致患者辐射剂量增加这一日益严重的问题。尽管剂量管理很重要,但很少有机构使用剂量测定系统来测量和控制患者的辐射剂量。为了帮助控制患者的辐射暴露,本研究旨在利用医学数字成像和通信-辐射剂量结构化报告中的剂量参数预测皮肤峰值剂量(PSD)。该研究聚焦于分为固定剂量(X线摄影和透视)和运动剂量(旋转数字减影血管造影)的空气比释动能(K)和空气比释动能面积乘积(KAP)值,用于正位和侧位双平面设备。利用单因素和多因素回归分析,基于放射光致发光玻璃剂量计的数据和五个剂量参数建立了PSD的模型方程。应用主成分分析(PCA)对数据进行整合,并使用主成分得分创建多因素回归模型。结果表明,旋转数字减影血管造影对PSD的影响最小,而K值在预测PSD方面比KAP具有更高的准确性。在多因素回归模型中纳入PCA进一步提高了准确性,均方根误差为226,证实PCA增强模型在预测PSD方面更有效。