Suppr超能文献

黑色素瘤病灶的FDG PET图像衍生纹理特征的主成分分析

Principal component analysis of texture features derived from FDG PET images of melanoma lesions.

作者信息

Anne-Leen DeLeu, Machaba Sathekge, Alex Maes, Bart De Spiegeleer, Laurence Beels, Mike Sathekge, Hans Pottel, Van de Wiele Christophe

机构信息

Department of Nuclear Medicine, AZ Groeninge, President Kennedylaan 4, 8500, Kortrijk, Belgium.

Department of Nuclear Medicine, University of Pretoria, Pretoria, South Africa.

出版信息

EJNMMI Phys. 2022 Sep 15;9(1):64. doi: 10.1186/s40658-022-00491-x.

Abstract

BACKGROUND

The clinical utility of radiomics is hampered by a high correlation between the large number of features analysed which may result in the "bouncing beta" phenomenon which could in part explain why in a similar patient population texture features identified and/or cut-off values of prognostic significance differ from one study to another. Principal component analysis (PCA) is a technique for reducing the dimensionality of large datasets containing highly correlated variables, such as texture feature datasets derived from FDG PET images, increasing data interpretability whilst at the same time minimizing information loss by creating new uncorrelated variables that successively maximize variance. Here, we report on PCA of a texture feature dataset derived from 123 malignant melanoma lesions with a significant range in lesion size using the freely available LIFEx software.

RESULTS

Thirty-eight features were derived from all lesions. All features were standardized. The statistical assumptions for carrying out PCA analysis were met. Seven principal components with an eigenvalue > 1 were identified. Based on the "elbow sign" of the Scree plot, only the first five were retained. The contribution to the total variance of these components derived using Varimax rotation was, respectively, 30.6%, 23.6%, 16.1%, 7.4% and 4.1%. The components provided summarized information on the locoregional FDG distribution with an emphasis on high FDG uptake regions, contrast in FDG uptake values (steepness), tumour volume, locoregional FDG distribution with an emphasis on low FDG uptake regions and on the rapidity of changes in SUV intensity between different regions.

CONCLUSIONS

PCA allowed to reduce the dataset of 38 features to a set of 5 uncorrelated new variables explaining approximately 82% of the total variance contained within the dataset. These principal components may prove more useful for multiple regression analysis considering the relatively low numbers of patients usually included in clinical trials on FDG PET texture analysis. Studies assessing the superior differential diagnostic, predictive or prognostic value of principal components derived using PCA as opposed to the initial texture features in clinical relevant settings are warranted.

摘要

背景

放射组学的临床应用受到所分析的大量特征之间高度相关性的阻碍,这可能导致“跳跃β”现象,这在一定程度上可以解释为什么在相似的患者群体中,所识别的纹理特征和/或具有预后意义的临界值在不同研究之间存在差异。主成分分析(PCA)是一种用于降低包含高度相关变量的大型数据集维度的技术,例如从FDG PET图像导出的纹理特征数据集,通过创建新的不相关变量来增加数据的可解释性,同时通过依次最大化方差来最小化信息损失。在此,我们使用免费的LIFEx软件报告了对来自123个恶性黑色素瘤病变的纹理特征数据集进行的主成分分析,这些病变的大小范围显著。

结果

从所有病变中提取了38个特征。所有特征均进行了标准化。满足进行主成分分析的统计假设。识别出7个特征值大于1的主成分。基于碎石图的“肘部标志”,仅保留了前5个主成分。使用方差最大化旋转得出的这些主成分对总方差的贡献分别为30.6%、23.6%、16.1%、7.4%和4.1%。这些主成分提供了有关局部FDG分布的汇总信息,重点是高FDG摄取区域、FDG摄取值的对比度(陡度)、肿瘤体积、以低FDG摄取区域为重点的局部FDG分布以及不同区域之间SUV强度变化的速度。

结论

主成分分析能够将38个特征的数据集减少为一组5个不相关的新变量,这些新变量解释了数据集中约82%的总方差。考虑到FDG PET纹理分析临床试验中通常纳入的患者数量相对较少,这些主成分可能对多元回归分析更有用。有必要开展研究,评估在临床相关环境中,与初始纹理特征相比,使用主成分分析得出的主成分在鉴别诊断、预测或预后方面的优越价值。

相似文献

9
Principal component analysis: a review and recent developments.主成分分析:综述与最新进展
Philos Trans A Math Phys Eng Sci. 2016 Apr 13;374(2065):20150202. doi: 10.1098/rsta.2015.0202.

本文引用的文献

2
A Role for FDG PET Radiomics in Personalized Medicine?18F-FDG PET 影像组学在个体化医学中的作用?
Semin Nucl Med. 2020 Nov;50(6):532-540. doi: 10.1053/j.semnuclmed.2020.05.002. Epub 2020 Jun 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验