Cao Zhantao, Shi Yuanbing, Zhang Shuli, Chen Huanan, Liu Weide, Yue Guanghui, Lin Huazhen
Institutions for Research, CETC Cyberspace Security Technology CO., LTD., Chengdu, China.
Chengdu Westone Information Security Technology Co., Ltd., Chengdu, China.
Med Phys. 2025 Jun;52(6):4188-4204. doi: 10.1002/mp.17753. Epub 2025 Mar 16.
Recently, deep convolutional neural networks (CNNs) have shown great potential in medical image classification tasks. However, the practical usage of the methods is constrained by two challenges: 1) the challenge of using nonindependent and identically distributed (non-IID) datasets from various medical institutions while ensuring privacy, and 2) the data imbalance problem due to the frequency of different diseases.
The objective of this paper is to present a novel approach for addressing these challenges through a decentralized learning method using a prototypical contrastive network to achieve precise medical image classification while mitigating the non-IID problem across different clients.
We propose a prototype contrastive network that minimizes disparities among heterogeneous clients. This network utilizes an approximate global prototype to alleviate the non-IID dataset problem for each local client by projecting data onto a balanced prototype space. To validate the effectiveness of our algorithm, we employed three distinct datasets of color fundus photographs for diabetic retinopathy: the EyePACS, APTOS, and IDRiD datasets. During training, we incorporated 35k images from EyePACS, 3662 from APTOS, and 516 from IDRiD. For testing, we used 53k images from EyePACS. Additionally, we included the COVIDx dataset of chest X-rays for comparative analysis, comprising 29 986 training images and 400 test samples.
In this study, we conducted comprehensive comparisons with existing works using four medical image datasets. Specifically, on the EyePACS dataset under the balanced IID setting, our method outperformed the FedAvg baseline by 3.7% in accuracy. In the Dirichlet non-IID setting, which presents an extremely unbalanced distribution, our method showed a notable 6.6% enhancement in accuracy over FedAvg. Similarly, on the APTOS dataset, our method achieved a 3.7% improvement in accuracy over FedAvg under the balanced IID setting and a 5.0% improvement under the Dirichlet non-IID setting. Notably, on the DCC non-IID and COVID-19 datasets, our method established a new state-of-the-art across all evaluation metrics, including WAccuracy, WPrecision, WRecall, and WF-score.
Our proposed prototypical contrastive loss guides the local client's data distribution to align with the global distribution. Additionally, our method uses an approximate global prototype to address unbalanced dataset distribution across local clients by projecting all data onto a new balanced prototype space. Our model achieves state-of-the-art performance on the EyePACS, APTOS, IDRiD, and COVIDx datasets.
最近,深度卷积神经网络(CNN)在医学图像分类任务中展现出了巨大潜力。然而,这些方法的实际应用受到两个挑战的限制:1)在确保隐私的同时使用来自不同医疗机构的非独立同分布(非IID)数据集的挑战,以及2)由于不同疾病的发生频率导致的数据不平衡问题。
本文的目的是提出一种新颖的方法来应对这些挑战,即通过使用原型对比网络的分散学习方法,在减轻不同客户端之间的非IID问题的同时实现精确的医学图像分类。
我们提出了一种原型对比网络,以最小化异构客户端之间的差异。该网络利用一个近似全局原型,通过将数据投影到平衡的原型空间来缓解每个本地客户端的非IID数据集问题。为了验证我们算法的有效性,我们使用了三个不同的糖尿病视网膜病变彩色眼底照片数据集:EyePACS、APTOS和IDRiD数据集。在训练期间,我们纳入了来自EyePACS的35k张图像、来自APTOS的3662张图像和来自IDRiD的516张图像。在测试时,我们使用了来自EyePACS的53k张图像。此外,我们还纳入了胸部X光的COVIDx数据集进行对比分析,该数据集包括29986张训练图像和400个测试样本。
在本研究中,我们使用四个医学图像数据集与现有工作进行了全面比较。具体而言,在平衡IID设置下的EyePACS数据集上,我们的方法在准确率上比FedAvg基线高出3.7%。在呈现极度不平衡分布的狄利克雷非IID设置下,我们的方法在准确率上比FedAvg显著提高了6.6%。同样,在APTOS数据集上,我们的方法在平衡IID设置下比FedAvg的准确率提高了3.7%,在狄利克雷非IID设置下提高了5.0%。值得注意的是,在DCC非IID和COVID-19数据集上,我们的方法在所有评估指标上都建立了新的最先进水平,包括加权准确率、加权精确率、加权召回率和加权F分数。
我们提出的原型对比损失引导本地客户端的数据分布与全局分布对齐。此外,我们的方法使用一个近似全局原型,通过将所有数据投影到一个新的平衡原型空间来解决本地客户端之间不平衡的数据集分布问题。我们的模型在EyePACS、APTOS、IDRiD和COVIDx数据集上实现了最先进的性能。