Suppr超能文献

基于对比和掩蔽自动编码器方法的自监督预训练在医学影像深度学习中小数据集处理中的应用。

Self-supervised pre-training with contrastive and masked autoencoder methods for dealing with small datasets in deep learning for medical imaging.

机构信息

Visual Computing Research Group, Institute of Media Informatics, Ulm University, Ulm, Germany.

Experimental Radiology Research Group, Department for Diagnostic and Interventional Radiology, Ulm University Medical Center, Ulm, Germany.

出版信息

Sci Rep. 2023 Nov 20;13(1):20260. doi: 10.1038/s41598-023-46433-0.

Abstract

Deep learning in medical imaging has the potential to minimize the risk of diagnostic errors, reduce radiologist workload, and accelerate diagnosis. Training such deep learning models requires large and accurate datasets, with annotations for all training samples. However, in the medical imaging domain, annotated datasets for specific tasks are often small due to the high complexity of annotations, limited access, or the rarity of diseases. To address this challenge, deep learning models can be pre-trained on large image datasets without annotations using methods from the field of self-supervised learning. After pre-training, small annotated datasets are sufficient to fine-tune the models for a specific task. The most popular self-supervised pre-training approaches in medical imaging are based on contrastive learning. However, recent studies in natural image processing indicate a strong potential for masked autoencoder approaches. Our work compares state-of-the-art contrastive learning methods with the recently introduced masked autoencoder approach "SparK" for convolutional neural networks (CNNs) on medical images. Therefore, we pre-train on a large unannotated CT image dataset and fine-tune on several CT classification tasks. Due to the challenge of obtaining sufficient annotated training data in medical imaging, it is of particular interest to evaluate how the self-supervised pre-training methods perform when fine-tuning on small datasets. By experimenting with gradually reducing the training dataset size for fine-tuning, we find that the reduction has different effects depending on the type of pre-training chosen. The SparK pre-training method is more robust to the training dataset size than the contrastive methods. Based on our results, we propose the SparK pre-training for medical imaging tasks with only small annotated datasets.

摘要

深度学习在医学影像中有潜力最小化诊断错误的风险,减轻放射科医生的工作量,并加速诊断。训练这样的深度学习模型需要大型且准确的数据集,并且需要对所有训练样本进行注释。然而,在医学成像领域,由于注释的复杂性高、访问受限或疾病罕见,特定任务的注释数据集通常较小。为了解决这个挑战,可以使用自监督学习领域的方法,在没有注释的情况下对大型图像数据集进行深度学习模型预训练。在预训练之后,只需使用少量的注释数据集就可以对模型进行针对特定任务的微调。医学影像中最流行的自监督预训练方法基于对比学习。然而,最近在自然图像处理领域的研究表明,掩蔽自动编码器方法具有很强的潜力。我们的工作将最先进的对比学习方法与最近引入的用于卷积神经网络 (CNN) 的掩蔽自动编码器方法“ SparK ”进行了比较,该方法用于医学图像。因此,我们在大型未注释的 CT 图像数据集上进行预训练,并在几个 CT 分类任务上进行微调。由于在医学成像中获取足够的注释训练数据具有挑战性,因此评估自监督预训练方法在微调小数据集时的性能特别有趣。通过逐步减少微调的训练数据集大小进行实验,我们发现,减少的效果取决于所选择的预训练方法的类型而有所不同。 SparK 预训练方法比对比方法对训练数据集大小更具鲁棒性。基于我们的结果,我们提出了 SparK 预训练方法,用于仅具有少量注释数据集的医学成像任务。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/34dd/10662445/5e87793f5d48/41598_2023_46433_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验