Suppr超能文献

通过具有迭代反向连接和循环模块的深度神经网络进行定量磁化率成像。

Quantitative susceptibility mapping via deep neural networks with iterative reverse concatenations and recurrent modules.

作者信息

Li Min, Chen Chen, Xiong Zhuang, Liu Yin, Rong Pengfei, Shan Shanshan, Liu Feng, Sun Hongfu, Gao Yang

机构信息

School of Computer Science and Engineering, Central South University, Changsha, China.

School of Electrical Engineering and Computer Science, University of Queensland, Brisbane, Australia.

出版信息

Med Phys. 2025 Jun;52(6):4341-4354. doi: 10.1002/mp.17747. Epub 2025 Mar 16.

Abstract

BACKGROUND

Quantitative susceptibility mapping (QSM) is a post-processing magnetic resonance imaging (MRI) technique that extracts the distribution of tissue susceptibilities and holds significant promise in the study of neurological diseases. However, the ill-conditioned nature of dipole inversion often results in noise and artifacts during QSM reconstruction from the tissue field. Deep learning methods have shown great potential in addressing these issues; however, most existing approaches rely on basic U-net structures, leading to limited performances and reconstruction artifacts sometimes.

PURPOSE

This study aims to develop a novel deep learning-based method, IRQSM, for improving QSM reconstruction accuracy while mitigating noise and artifacts by leveraging a unique network architecture that enhances latent feature utilization.

METHODS

IRQSM, an advanced U-net architecture featuring four iterations of reverse concatenations and middle recurrent modules, was proposed to optimize feature fusion and improve QSM accuracy, and comparative experiments based on both simulated and in vivo datasets were carried out to compare IRQSM with two traditional iterative methods (iLSQR, MEDI) and four recently proposed deep learning methods (U-net, xQSM, LPCNN, and MoDL-QSM).

RESULTS

In this work, IRQSM outperformed all other methods in reducing artifacts and noise in QSM images. It achieved on average the lowest XSIM (84.81%) in simulations, showing improvements of 12.80%, 12.68%, 18.66%, 10.49%, 25.57%, and 19.78% over iLSQR, MEDI, U-net, xQSM, LPCNN, and MoDL-QSM, respectively, and yielded results with the least artifacts on the in vivo data and present the most visually appealing results. In the meantime, it successfully alleviated the over-smoothing and susceptibility underestimation in LPCNN results.

CONCLUSION

Overall, the proposed IRQSM showed superior QSM results compared to iterative and deep learning-based methods, offering a more accurate QSM solution for clinical applications.

摘要

背景

定量磁化率成像(QSM)是一种后处理磁共振成像(MRI)技术,可提取组织磁化率分布,在神经疾病研究中具有重要前景。然而,偶极子反演的病态性质常常导致在从组织场进行QSM重建时产生噪声和伪影。深度学习方法在解决这些问题方面显示出巨大潜力;然而,大多数现有方法依赖于基本的U-net结构,有时会导致性能受限和重建伪影。

目的

本研究旨在开发一种基于深度学习的新型方法IRQSM,通过利用增强潜在特征利用的独特网络架构来提高QSM重建精度,同时减轻噪声和伪影。

方法

提出了IRQSM,这是一种具有四次反向拼接迭代和中间循环模块的先进U-net架构,用于优化特征融合并提高QSM精度,并基于模拟和体内数据集进行了对比实验,以将IRQSM与两种传统迭代方法(iLSQR、MEDI)和四种最近提出的深度学习方法(U-net、xQSM、LPCNN和MoDL-QSM)进行比较。

结果

在本研究中,IRQSM在减少QSM图像中的伪影和噪声方面优于所有其他方法。在模拟中,它平均实现了最低的XSIM(84.81%),分别比iLSQR、MEDI、U-net、xQSM、LPCNN和MoDL-QSM提高了12.80%、12.68%、18.66%、10.49%、25.57%和19.78%,并且在体内数据上产生的伪影最少,呈现出最具视觉吸引力的结果。同时,它成功缓解了LPCNN结果中的过度平滑和磁化率低估问题。

结论

总体而言,与基于迭代和深度学习的方法相比,所提出的IRQSM显示出卓越的QSM结果,为临床应用提供了更准确的QSM解决方案。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验