Suppr超能文献

一种用于减少定量磁化率成像中伪影的多通道输入卷积神经网络

[A multi-channel input convolutional neural network for artifact reduction in quantitative susceptibility mapping].

作者信息

Si W, Feng Y

机构信息

School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China.

Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Provincial Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou 510515, China.

出版信息

Nan Fang Yi Ke Da Xue Xue Bao. 2022 Dec 20;42(12):1799-1806. doi: 10.12122/j.issn.1673-4254.2022.12.07.

Abstract

OBJECTIVE

To develop a deep learning-based QSM reconstruction method for reducing artifacts to improve the accuracy of magnetic susceptibility results.

METHODS

To eliminate artifacts caused by susceptibility interfaces with gigantic differences, we propose a multi-channel input convolutional neural network for artifact reduction (MAR-CNN) for solving the dipole inversion problem in QSM. In this neural network, the original tissue field was first separated into two components, which were subsequently imported as additional channels into a multi-channel 3D U-Net. MAR-CNN was compared with 3 conventional model-based methods, namely truncated k-space deconvolution (TKD), morphology enabled dipole inversion (MEDI), and improved sparse linear equation and least squares method (iLSQR), and with a deep learning method (QSMnet). High-frequency error norm, peak signal-to-noise ratio, normalized root mean squared error, and structure similarity index were reported for quantitative comparisons.

RESULTS

Experiments on healthy volunteers demonstrated that the results obtained using MAR-CNN had superior peak signal-to-noise ratio (43.12±1.19) and normalized root mean squared error (51.98± 3.65) to those of TKD, MEDI, iLSQR and QSMnet. MAR-CNN outperformed QSMnet reconstruction on all the 4 quantitative metrics with significant differences ( < 0.05). Experiment on data of simulated hemorrhagic lesion demonstrated that MAR-CNN produced less shadow artifacts around the bleeding lesion than the other 4 methods.

CONCLUSION

The proposed MAR-CNN for artifact reduction is capable of improving the accuracy of deep learning- based QSM reconstruction to effectively reduce artifacts.

摘要

目的

开发一种基于深度学习的定量磁敏感图(QSM)重建方法,以减少伪影,提高磁敏感性结果的准确性。

方法

为消除由巨大差异的磁敏感性界面引起的伪影,我们提出一种用于减少伪影的多通道输入卷积神经网络(MAR-CNN),以解决QSM中的偶极子反演问题。在这个神经网络中,原始组织场首先被分离成两个分量,随后作为额外通道导入到多通道3D U-Net中。将MAR-CNN与3种传统的基于模型的方法(即截断k空间去卷积(TKD)、形态学偶极子反演(MEDI)和改进的稀疏线性方程与最小二乘法(iLSQR))以及一种深度学习方法(QSMnet)进行比较。报告高频误差范数、峰值信噪比、归一化均方根误差和结构相似性指数进行定量比较。

结果

对健康志愿者的实验表明,使用MAR-CNN获得的结果在峰值信噪比(43.12±1.19)和归一化均方根误差(51.98±3.65)方面优于TKD、MEDI、iLSQR和QSMnet。在所有4个定量指标上,MAR-CNN的重建效果均优于QSMnet,差异有统计学意义(<0.05)。对模拟出血性病变数据的实验表明,MAR-CNN在出血病变周围产生的阴影伪影比其他4种方法少。

结论

所提出的用于减少伪影的MAR-CNN能够提高基于深度学习的QSM重建的准确性,有效减少伪影。

相似文献

3
Quantitative susceptibility mapping using deep neural network: QSMnet.基于深度神经网络的定量磁化率映射:QSMnet。
Neuroimage. 2018 Oct 1;179:199-206. doi: 10.1016/j.neuroimage.2018.06.030. Epub 2018 Jun 15.
9
Exploring linearity of deep neural network trained QSM: QSMnet.探索深度神经网络训练的 QSM 线性:QSMnet。
Neuroimage. 2020 May 1;211:116619. doi: 10.1016/j.neuroimage.2020.116619. Epub 2020 Feb 7.

本文引用的文献

3
QSMART: Quantitative susceptibility mapping artifact reduction technique.QSMART:定量磁敏感图伪影减少技术。
Neuroimage. 2021 May 1;231:117701. doi: 10.1016/j.neuroimage.2020.117701. Epub 2021 Jan 20.
5
Learned Proximal Networks for Quantitative Susceptibility Mapping.用于定量磁化率成像的学习近端网络
Med Image Comput Comput Assist Interv. 2020 Oct;12262:125-135. doi: 10.1007/978-3-030-59713-9_13. Epub 2020 Sep 29.
8
Exploring linearity of deep neural network trained QSM: QSMnet.探索深度神经网络训练的 QSM 线性:QSMnet。
Neuroimage. 2020 May 1;211:116619. doi: 10.1016/j.neuroimage.2020.116619. Epub 2020 Feb 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验