Suppr超能文献

一种用于稳健生物标志物发现的综合多组学随机森林框架。

An Integrative Multi-Omics Random Forest Framework for Robust Biomarker Discovery.

作者信息

Zhang Wei, Huang Hanchen, Wang Lily, Lehmann Brian D, Chen Steven X

机构信息

Division of Biostatistics, Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.

Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL 33136, USA.

出版信息

bioRxiv. 2025 Mar 6:2025.03.05.641533. doi: 10.1101/2025.03.05.641533.

Abstract

High-throughput technologies now produce a wide array of omics data, from genomic and transcriptomic profiles to epigenomic and proteomic measurements. Integrating these diverse data types can yield deeper insights into the biological mechanisms driving complex traits and diseases. Yet, extracting key shared biomarkers from multiple data layers remains a major challenge. We present a multivariate random forest (MRF)-based framework enhanced by a novel inverse minimal depth (IMD) metric for integrative variable selection. By assigning response variables to tree nodes and employing IMD to rank predictors, our approach efficiently identifies essential features across different omics types, even when confronted with high-dimensionality and noise. Through extensive simulations and analyses of multi-omics datasets from The Cancer Genome Atlas, we demonstrate that our method outperforms established integrative techniques in uncovering biologically meaningful biomarkers and pathways. Our findings show that selected biomarkers not only correlate with known regulatory and signaling networks but can also stratify patient subgroups with distinct clinical outcomes. The method's scalable, interpretable, and user-friendly implementation ensures broad applicability to a range of research questions. This MRF-based framework advances robust biomarker discovery and integrative multi-omics analyses, accelerating the translation of complex molecular data into tangible biological and clinical insights.

摘要

高通量技术如今产生了各种各样的组学数据,从基因组和转录组图谱到表观基因组和蛋白质组测量。整合这些不同的数据类型能够更深入地洞察驱动复杂性状和疾病的生物学机制。然而,从多个数据层中提取关键的共享生物标志物仍然是一项重大挑战。我们提出了一个基于多元随机森林(MRF)的框架,并通过一种新颖的逆最小深度(IMD)指标对其进行增强,用于综合变量选择。通过将响应变量分配给树节点并使用IMD对预测变量进行排序,我们的方法能够有效地识别不同组学类型中的关键特征,即使面对高维度和噪声也能如此。通过对来自癌症基因组图谱的多组学数据集进行广泛的模拟和分析,我们证明我们的方法在揭示具有生物学意义的生物标志物和通路方面优于现有的综合技术。我们的研究结果表明,所选的生物标志物不仅与已知的调控和信号网络相关,还能够对具有不同临床结果的患者亚组进行分层。该方法可扩展、可解释且用户友好的实现方式确保了其在一系列研究问题中的广泛适用性。这个基于MRF的框架推动了强大的生物标志物发现和综合多组学分析,加速了将复杂分子数据转化为切实的生物学和临床见解的过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/82ef/11908250/b81b2a1c1d72/nihpp-2025.03.05.641533v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验