Kulathunga Dulitha P, Potoyan Davit A
Department of Chemistry, Iowa State University, Ames, IA 50011.
Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology.
bioRxiv. 2025 Mar 6:2025.03.03.641325. doi: 10.1101/2025.03.03.641325.
Enzyme thermal adaptation reflects a delicate interplay between sequence, structure, and dynamics of proteins, fine-tuning the catalytic activity to environmental demands. Understanding these evolutionary relationships can drive bioengineering advances, including industrial enzyme design, biocatalysts for extreme conditions, and novel therapeutics. This work explores sequence-dynamics connections in subtilisin-like serine protease homologs using a recently developed computational methodology that uses expanded ensemble simulations and temperature-sensitive contact analysis. We reveal that thermophilic enzymes achieve thermal stability through extensive salt bridges and hydrophobic networks, while psychrophilic enzymes rely on targeted interaction stability for cold adaptation. An unsupervised cluster analysis of residue conservation, flexibility, and hydrophobic interactions provides a comprehensive view of residue-specific contributions to thermal adaptation. These findings underscore the coordinated roles of conserved and variable regions in enzyme stability and offer a framework for tailoring enzymes to specific thermal properties for biotechnological applications.
酶的热适应性反映了蛋白质序列、结构和动力学之间微妙的相互作用,可根据环境需求微调催化活性。了解这些进化关系能够推动生物工程的进步,包括工业酶设计、极端条件下的生物催化剂以及新型疗法。这项工作使用一种最近开发的计算方法,即扩展系综模拟和温度敏感接触分析,探索枯草杆菌蛋白酶样丝氨酸蛋白酶同源物中的序列-动力学联系。我们发现,嗜热酶通过广泛的盐桥和疏水网络实现热稳定性,而嗜冷酶则依靠靶向相互作用稳定性来适应低温。对残基保守性、灵活性和疏水相互作用进行的无监督聚类分析,全面展示了残基对热适应性的特定贡献。这些发现强调了保守区域和可变区域在酶稳定性中的协同作用,并为针对生物技术应用的特定热性质定制酶提供了一个框架。