Suppr超能文献

应用于脑功能连接的贝叶斯网络标量回归

Bayesian scalar-on-network regression with applications to brain functional connectivity.

作者信息

Ju Xiaomeng, Park Hyung G, Tarpey Thaddeus

机构信息

Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, United States.

出版信息

Biometrics. 2025 Jan 7;81(1). doi: 10.1093/biomtc/ujaf023.

Abstract

This paper presents a Bayesian regression model relating scalar outcomes to brain functional connectivity represented as symmetric positive definite (SPD) matrices. Unlike many proposals that simply vectorize the matrix-valued connectivity predictors, thereby ignoring their geometric structure, the method presented here respects the Riemannian geometry of SPD matrices by using a tangent space modeling. Dimension reduction is performed in the tangent space, relating the resulting low-dimensional representations to the responses. The dimension reduction matrix is learned in a supervised manner with a sparsity-inducing prior imposed on a Stiefel manifold to prevent overfitting. Our method yields a parsimonious regression model that allows uncertainty quantification of all model parameters and identification of key brain regions that predict the outcomes. We demonstrate the performance of our approach in simulation settings and through a case study to predict Picture Vocabulary scores using data from the Human Connectome Project.

摘要

本文提出了一种贝叶斯回归模型,该模型将标量结果与表示为对称正定(SPD)矩阵的脑功能连接性相关联。与许多简单地将矩阵值连接性预测器向量化从而忽略其几何结构的提议不同,这里提出的方法通过使用切空间建模来尊重SPD矩阵的黎曼几何。在切空间中进行降维,将得到的低维表示与响应相关联。降维矩阵通过在监督方式下学习得到,同时在Stiefel流形上施加一个诱导稀疏性的先验以防止过拟合。我们的方法产生了一个简约的回归模型,该模型允许对所有模型参数进行不确定性量化,并识别预测结果的关键脑区。我们在模拟设置中以及通过一个案例研究展示了我们方法的性能,该案例研究使用人类连接组计划的数据来预测图片词汇得分。

相似文献

2
Bayesian estimation of covariate assisted principal regression for brain functional connectivity.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae023.
3
Re-visiting Riemannian geometry of symmetric positive definite matrices for the analysis of functional connectivity.
Neuroimage. 2021 Jan 15;225:117464. doi: 10.1016/j.neuroimage.2020.117464. Epub 2020 Oct 17.
4
Bayesian modeling of dependence in brain connectivity data.
Biostatistics. 2020 Apr 1;21(2):269-286. doi: 10.1093/biostatistics/kxy046.
5
Uncovering shape signatures of resting-state functional connectivity by geometric deep learning on Riemannian manifold.
Hum Brain Mapp. 2022 Sep;43(13):3970-3986. doi: 10.1002/hbm.25897. Epub 2022 May 10.
6
Transport on Riemannian manifold for functional connectivity-based classification.
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):405-12. doi: 10.1007/978-3-319-10470-6_51.
7
Learning Brain Dynamics of Evolving Manifold Functional MRI Data Using Geometric-Attention Neural Network.
IEEE Trans Med Imaging. 2022 Oct;41(10):2752-2763. doi: 10.1109/TMI.2022.3169640. Epub 2022 Sep 30.
8
Structurally-informed Bayesian functional connectivity analysis.
Neuroimage. 2014 Feb 1;86:294-305. doi: 10.1016/j.neuroimage.2013.09.075. Epub 2013 Oct 10.
9
Connectivity Regression.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf002.
10
Bayesian networks for fMRI: a primer.
Neuroimage. 2014 Feb 1;86:573-82. doi: 10.1016/j.neuroimage.2013.10.020. Epub 2013 Oct 18.

本文引用的文献

1
Bayesian estimation of covariate assisted principal regression for brain functional connectivity.
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae023.
2
Matrix-Variate Regression for Sparse, Low-Rank Estimation of Brain Connectivities Associated With a Clinical Outcome.
IEEE Trans Biomed Eng. 2024 Apr;71(4):1378-1390. doi: 10.1109/TBME.2023.3336241. Epub 2024 Mar 20.
3
Symmetric Bilinear Regression for Signal Subgraph Estimation.
IEEE Trans Signal Process. 2019 Apr 1;67(7):1929-1940. doi: 10.1109/tsp.2019.2899818. Epub 2019 Feb 15.
4
Stan: A Probabilistic Programming Language.
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
5
Soft Tensor Regression.
J Mach Learn Res. 2021 Jan-Dec;22.
6
On the interpretation of linear Riemannian tangent space model parameters in M/EEG.
Annu Int Conf IEEE Eng Med Biol Soc. 2021 Nov;2021:5909-5913. doi: 10.1109/EMBC46164.2021.9630144.
7
Tucker Tensor Regression and Neuroimaging Analysis.
Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.
8
Single-index models with functional connectivity network predictors.
Biostatistics. 2022 Dec 12;24(1):52-67. doi: 10.1093/biostatistics/kxab015.
9
Re-visiting Riemannian geometry of symmetric positive definite matrices for the analysis of functional connectivity.
Neuroimage. 2021 Jan 15;225:117464. doi: 10.1016/j.neuroimage.2020.117464. Epub 2020 Oct 17.
10
Network connectivity predicts language processing in healthy adults.
Hum Brain Mapp. 2020 Sep;41(13):3696-3708. doi: 10.1002/hbm.25042. Epub 2020 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验