Suppr超能文献

应用于脑功能连接的贝叶斯网络标量回归

Bayesian scalar-on-network regression with applications to brain functional connectivity.

作者信息

Ju Xiaomeng, Park Hyung G, Tarpey Thaddeus

机构信息

Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, United States.

出版信息

Biometrics. 2025 Jan 7;81(1). doi: 10.1093/biomtc/ujaf023.

Abstract

This paper presents a Bayesian regression model relating scalar outcomes to brain functional connectivity represented as symmetric positive definite (SPD) matrices. Unlike many proposals that simply vectorize the matrix-valued connectivity predictors, thereby ignoring their geometric structure, the method presented here respects the Riemannian geometry of SPD matrices by using a tangent space modeling. Dimension reduction is performed in the tangent space, relating the resulting low-dimensional representations to the responses. The dimension reduction matrix is learned in a supervised manner with a sparsity-inducing prior imposed on a Stiefel manifold to prevent overfitting. Our method yields a parsimonious regression model that allows uncertainty quantification of all model parameters and identification of key brain regions that predict the outcomes. We demonstrate the performance of our approach in simulation settings and through a case study to predict Picture Vocabulary scores using data from the Human Connectome Project.

摘要

本文提出了一种贝叶斯回归模型,该模型将标量结果与表示为对称正定(SPD)矩阵的脑功能连接性相关联。与许多简单地将矩阵值连接性预测器向量化从而忽略其几何结构的提议不同,这里提出的方法通过使用切空间建模来尊重SPD矩阵的黎曼几何。在切空间中进行降维,将得到的低维表示与响应相关联。降维矩阵通过在监督方式下学习得到,同时在Stiefel流形上施加一个诱导稀疏性的先验以防止过拟合。我们的方法产生了一个简约的回归模型,该模型允许对所有模型参数进行不确定性量化,并识别预测结果的关键脑区。我们在模拟设置中以及通过一个案例研究展示了我们方法的性能,该案例研究使用人类连接组计划的数据来预测图片词汇得分。

相似文献

4
Bayesian modeling of dependence in brain connectivity data.脑连接数据中相关性的贝叶斯建模。
Biostatistics. 2020 Apr 1;21(2):269-286. doi: 10.1093/biostatistics/kxy046.
6
Transport on Riemannian manifold for functional connectivity-based classification.基于功能连接性分类的黎曼流形上的传输
Med Image Comput Comput Assist Interv. 2014;17(Pt 2):405-12. doi: 10.1007/978-3-319-10470-6_51.
8
Structurally-informed Bayesian functional connectivity analysis.基于结构的贝叶斯功能连接分析。
Neuroimage. 2014 Feb 1;86:294-305. doi: 10.1016/j.neuroimage.2013.09.075. Epub 2013 Oct 10.
9
Connectivity Regression.连通性回归
Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxaf002.
10
Bayesian networks for fMRI: a primer.贝叶斯网络在 fMRI 中的应用:入门指南。
Neuroimage. 2014 Feb 1;86:573-82. doi: 10.1016/j.neuroimage.2013.10.020. Epub 2013 Oct 18.

本文引用的文献

3
Symmetric Bilinear Regression for Signal Subgraph Estimation.用于信号子图估计的对称双线性回归
IEEE Trans Signal Process. 2019 Apr 1;67(7):1929-1940. doi: 10.1109/tsp.2019.2899818. Epub 2019 Feb 15.
4
Stan: A Probabilistic Programming Language.斯坦:一种概率编程语言。
J Stat Softw. 2017;76. doi: 10.18637/jss.v076.i01. Epub 2017 Jan 11.
5
Soft Tensor Regression.软张量回归
J Mach Learn Res. 2021 Jan-Dec;22.
7
Tucker Tensor Regression and Neuroimaging Analysis.塔克张量回归与神经影像分析
Stat Biosci. 2018 Dec;10(3):520-545. doi: 10.1007/s12561-018-9215-6. Epub 2018 Mar 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验