Ju Xiaomeng, Park Hyung G, Tarpey Thaddeus
Division of Biostatistics, Department of Population Health, New York University Grossman School of Medicine, New York, NY 10016, United States.
Biometrics. 2025 Jan 7;81(1). doi: 10.1093/biomtc/ujaf023.
This paper presents a Bayesian regression model relating scalar outcomes to brain functional connectivity represented as symmetric positive definite (SPD) matrices. Unlike many proposals that simply vectorize the matrix-valued connectivity predictors, thereby ignoring their geometric structure, the method presented here respects the Riemannian geometry of SPD matrices by using a tangent space modeling. Dimension reduction is performed in the tangent space, relating the resulting low-dimensional representations to the responses. The dimension reduction matrix is learned in a supervised manner with a sparsity-inducing prior imposed on a Stiefel manifold to prevent overfitting. Our method yields a parsimonious regression model that allows uncertainty quantification of all model parameters and identification of key brain regions that predict the outcomes. We demonstrate the performance of our approach in simulation settings and through a case study to predict Picture Vocabulary scores using data from the Human Connectome Project.
本文提出了一种贝叶斯回归模型,该模型将标量结果与表示为对称正定(SPD)矩阵的脑功能连接性相关联。与许多简单地将矩阵值连接性预测器向量化从而忽略其几何结构的提议不同,这里提出的方法通过使用切空间建模来尊重SPD矩阵的黎曼几何。在切空间中进行降维,将得到的低维表示与响应相关联。降维矩阵通过在监督方式下学习得到,同时在Stiefel流形上施加一个诱导稀疏性的先验以防止过拟合。我们的方法产生了一个简约的回归模型,该模型允许对所有模型参数进行不确定性量化,并识别预测结果的关键脑区。我们在模拟设置中以及通过一个案例研究展示了我们方法的性能,该案例研究使用人类连接组计划的数据来预测图片词汇得分。