Yin Jiaxin, Li Weixia, Shen Junhong, Zhou Chaoyu, Li Siqi, Suo Jingchao, Yang Jujing, Jia Ruiqi, Lv Chunli
China Agricultural University, Beijing 100083, China.
Plants (Basel). 2025 Feb 22;14(5):675. doi: 10.3390/plants14050675.
Accurate detection of soybean diseases is a critical component in achieving intelligent agricultural management. However, traditional methods often underperform in complex field scenarios. This paper proposes a diffusion-based object detection model that integrates the endogenous diffusion sub-network and the endogenous diffusion loss function to progressively optimize feature distributions, significantly enhancing detection performance for complex backgrounds and diverse disease regions. Experimental results demonstrate that the proposed method outperforms multiple baseline models, achieving a precision of 94%, recall of 90%, accuracy of 92%, and mAP@50 and mAP@75 of 92% and 91%, respectively, surpassing RetinaNet, DETR, YOLOv10, and DETR v2. In fine-grained disease detection, the model performs best on rust detection, with a precision of 96% and a recall of 93%. For more complex diseases such as bacterial blight and Fusarium head blight, precision and mAP exceed 90%. Compared to self-attention and CBAM, the proposed endogenous diffusion attention mechanism further improves feature extraction accuracy and robustness. This method demonstrates significant advantages in both theoretical innovation and practical application, providing critical technological support for intelligent soybean disease detection.
准确检测大豆病害是实现智能农业管理的关键组成部分。然而,传统方法在复杂的田间场景中往往表现不佳。本文提出了一种基于扩散的目标检测模型,该模型集成了内源扩散子网络和内源扩散损失函数,以逐步优化特征分布,显著提高了对复杂背景和多样病害区域的检测性能。实验结果表明,该方法优于多个基线模型,精度达到94%,召回率为90%,准确率为92%,mAP@50和mAP@75分别为92%和91%,超过了RetinaNet、DETR、YOLOv10和DETR v2。在细粒度病害检测中,该模型在锈病检测方面表现最佳,精度为96%,召回率为93%。对于诸如细菌性疫病和赤霉病等更复杂的病害,精度和mAP超过90%。与自注意力和CBAM相比,所提出的内源扩散注意力机制进一步提高了特征提取的准确性和鲁棒性。该方法在理论创新和实际应用方面均显示出显著优势,为智能大豆病害检测提供了关键技术支持。