Karmakar Asmita, Augustine Allan Blessing Harison Raj, Thummer Rajkumar P
Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
Adv Exp Med Biol. 2025;1483:21-47. doi: 10.1007/5584_2025_853.
Pluripotent stem cells, comprising embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), are characterized by their self-renewal capacity and the ability to differentiate into cells of all three germ layers of an adult animal. Out of the two, iPSCs are generated through the reprogramming of somatic cells by inducing a pluripotency-specific transcriptional program. This process requires a resetting of the somatic cell genome to a pluripotent cell-specific genome, resulting in cellular stress at genomic, epigenetic, and transcriptional levels. Notably, in contrast to the predominant compact and inactive organization of chromatin in somatic cells, the chromatin in ESCs and iPSCs is open. Furthermore, maintaining a pluripotent state needs a plethora of changes in the genetic landscape of the cells. Here, we attempt to elucidate how certain genes safeguard genomic stability in ESCs and iPSCs, aiding in the complex cellular mechanisms that regulate self-renewal, pluripotency, and somatic reprogramming.
多能干细胞,包括胚胎干细胞(ESCs)和诱导多能干细胞(iPSCs),其特征在于自我更新能力以及分化为成年动物所有三个胚层细胞的能力。在这两者中,iPSCs是通过诱导多能性特异性转录程序对体细胞进行重编程而产生的。这个过程需要将体细胞基因组重置为多能细胞特异性基因组,从而在基因组、表观遗传和转录水平上产生细胞应激。值得注意的是,与体细胞中染色质主要紧凑且无活性的组织方式不同,ESCs和iPSCs中的染色质是开放的。此外,维持多能状态需要细胞遗传格局发生大量变化。在这里,我们试图阐明某些基因如何保障ESCs和iPSCs中的基因组稳定性,助力调节自我更新、多能性和体细胞重编程的复杂细胞机制。
Adv Exp Med Biol. 2025
Epigenetics Chromatin. 2025-6-27
Hum Reprod Update. 2025-4-29
Hum Reprod Update. 2025-6-28
Front Bioeng Biotechnol. 2025-6-12
Cell Biosci. 2023-10-24
Int J Mol Sci. 2023-5-7
Cell Death Dis. 2023-1-18
Stem Cells. 2022-10-21
Stem Cell Rev Rep. 2022-12
Cells. 2022-3-10
Exp Gerontol. 2022-6-1
Front Cell Dev Biol. 2021-11-24