文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

MicroRNA 在细胞重编程机制中的作用。

MicroRNA Roles in Cell Reprogramming Mechanisms.

机构信息

Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy.

Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.

出版信息

Cells. 2022 Mar 10;11(6):940. doi: 10.3390/cells11060940.


DOI:10.3390/cells11060940
PMID:35326391
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8946776/
Abstract

Cell reprogramming is a groundbreaking technology that, in few decades, generated a new paradigm in biomedical science. To date we can use cell reprogramming to potentially generate every cell type by converting somatic cells and suitably modulating the expression of key transcription factors. This approach can be used to convert skin fibroblasts into pluripotent stem cells as well as into a variety of differentiated and medically relevant cell types, including cardiomyocytes and neural cells. The molecular mechanisms underlying such striking cell phenotypes are still largely unknown, but in the last decade it has been proven that cell reprogramming approaches are significantly influenced by non-coding RNAs. Specifically, this review will focus on the role of microRNAs in the reprogramming processes that lead to the generation of pluripotent stem cells, neurons, and cardiomyocytes. As highlighted here, non-coding RNA-forced expression can be sufficient to support some cell reprogramming processes, and, therefore, we will also discuss how these molecular determinants could be used in the future for biomedical purposes.

摘要

细胞重编程是一项具有开创性的技术,在短短几十年内就在生物医学科学中产生了一种新的范例。迄今为止,我们可以通过重编程体细胞并适当调节关键转录因子的表达来潜在地产生所有类型的细胞。这种方法可用于将皮肤成纤维细胞转化为多能干细胞以及多种分化和与医学相关的细胞类型,包括心肌细胞和神经细胞。这种惊人的细胞表型背后的分子机制在很大程度上仍然未知,但在过去十年中已经证明,细胞重编程方法受到非编码 RNA 的显著影响。具体而言,本综述将重点介绍 microRNAs 在重编程过程中的作用,这些过程导致多能干细胞、神经元和心肌细胞的产生。如本文所强调的,非编码 RNA 强制表达足以支持一些细胞重编程过程,因此,我们还将讨论这些分子决定因素将来如何用于生物医学目的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78e/8946776/8e9c6fdf23fb/cells-11-00940-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78e/8946776/8e9c6fdf23fb/cells-11-00940-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d78e/8946776/8e9c6fdf23fb/cells-11-00940-g001.jpg

相似文献

[1]
MicroRNA Roles in Cell Reprogramming Mechanisms.

Cells. 2022-3-10

[2]
Non-modified RNA-Based Reprogramming of Human Dermal Fibroblasts into Induced Pluripotent Stem Cells.

Methods Mol Biol. 2022

[3]
Noncoding RNAs in the Regulation of Pluripotency and Reprogramming.

Stem Cell Rev Rep. 2018-2

[4]
Combined RNA-seq and RAT-seq mapping of long noncoding RNAs in pluripotent reprogramming.

Sci Data. 2018-11-20

[5]
Pharmacological Reprogramming of Somatic Cells for Regenerative Medicine.

Acc Chem Res. 2017-4-28

[6]
Long noncoding RNAs sustain high expression levels of exogenous octamer-binding protein 4 by sponging regulatory microRNAs during cellular reprogramming.

J Biol Chem. 2019-10-17

[7]
MicroRNA-Mediated Reprogramming of Somatic Cells into Neural Stem Cells or Neurons.

Mol Neurobiol. 2017-3

[8]
Identification of microRNAs related with neural germ layer lineage-specific progenitors during reprogramming.

J Mol Histol. 2022-8

[9]
How microRNAs facilitate reprogramming to pluripotency.

J Cell Sci. 2012-10-17

[10]
miRNAs involved in the generation, maintenance, and differentiation of pluripotent cells.

J Mol Med (Berl). 2012-6-9

引用本文的文献

[1]
Somatic cell reprogramming for Parkinson's disease treatment.

Ibrain. 2025-1-4

[2]
Genes as Genome Stabilizers in Pluripotent Stem Cells.

Adv Exp Med Biol. 2025

[3]
Direct fibroblast reprogramming: an emerging strategy for treating organic fibrosis.

J Transl Med. 2025-2-27

[4]
Molecular Morbidity Score-Can MicroRNAs Assess the Burden of Disease?

Int J Mol Sci. 2024-7-24

[5]
Hypoxia-induced epigenetic regulation of miR-485-3p promotes stemness and chemoresistance in pancreatic ductal adenocarcinoma via SLC7A11-mediated ferroptosis.

Cell Death Discov. 2024-5-29

[6]
Circ_0027885 sponges miR-203-3p to regulate RUNX2 expression and alleviates osteoporosis progression.

BMC Musculoskelet Disord. 2024-1-2

[7]
Integration of Transcriptome and MicroRNA Profile Analysis of iMSCs Defines Their Rejuvenated State and Conveys Them into a Novel Resource for Cell Therapy in Osteoarthritis.

Cells. 2023-6-30

[8]
Direct Lineage Reprogramming for Induced Keratinocyte Stem Cells: A Potential Approach for Skin Repair.

Stem Cells Transl Med. 2023-5-15

[9]
Induced pluripotent stem cell-derived and directly reprogrammed neurons to study neurodegenerative diseases: The impact of aging signatures.

Front Aging Neurosci. 2022-12-20

[10]
MicroRNA: A Linking between Astrocyte Dysfunction, Mild Cognitive Impairment, and Neurodegenerative Diseases.

Life (Basel). 2022-9-16

本文引用的文献

[1]
Direct neuronal reprogramming: Fast forward from new concepts toward therapeutic approaches.

Neuron. 2022-2-2

[2]
Revisiting astrocyte to neuron conversion with lineage tracing in vivo.

Cell. 2021-10-14

[3]
Advanced Technologies to Target Cardiac Cell Fate Plasticity for Heart Regeneration.

Int J Mol Sci. 2021-9-1

[4]
Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts.

Nat Biomed Eng. 2021-8

[5]
Direct cardiac reprogramming comes of age: Recent advance and remaining challenges.

Semin Cell Dev Biol. 2022-2

[6]
Direct in vivo reprogramming with non-viral sequential targeting nanoparticles promotes cardiac regeneration.

Biomaterials. 2021-9

[7]
Highly Efficient MicroRNA Delivery Using Functionalized Carbon Dots for Enhanced Conversion of Fibroblasts to Cardiomyocytes.

Int J Nanomedicine. 2021

[8]
Inhibition of EZH2 primes the cardiac gene activation via removal of epigenetic repression during human direct cardiac reprogramming.

Stem Cell Res. 2021-5

[9]
Targeting fibrosis in the failing heart with nanoparticles.

Adv Drug Deliv Rev. 2021-7

[10]
The histone reader PHF7 cooperates with the SWI/SNF complex at cardiac super enhancers to promote direct reprogramming.

Nat Cell Biol. 2021-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索