Suppr超能文献

基于双编码器UNet的窄带非制冷红外成像去噪网络

Dual-Encoder UNet-Based Narrowband Uncooled Infrared Imaging Denoising Network.

作者信息

Wang Minghe, Yuan Pan, Qiu Su, Jin Weiqi, Li Li, Wang Xia

机构信息

MOE Key Laboratory of Optoelectronic Imaging Technology and System, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Sensors (Basel). 2025 Feb 27;25(5):1476. doi: 10.3390/s25051476.

Abstract

Uncooled infrared imaging systems have significant potential in industrial hazardous gas leak detection. However, the use of narrowband filters to match gas spectral absorption peaks leads to a low level of incident energy captured by uncooled infrared cameras. This results in a mixture of fixed pattern noise and Gaussian noise, while existing denoising methods for uncooled infrared images struggle to effectively address this mixed noise, severely hindering the extraction and identification of actual gas leak plumes. This paper presents a UNet-structured dual-encoder denoising network specifically designed for narrowband uncooled infrared images. Based on the distinct characteristics of Gaussian random noise and row-column stripe noise, we developed a basic scale residual attention (BSRA) encoder and an enlarged scale residual attention (ESRA) encoder. These two encoder branches perform noise perception and encoding across different receptive fields, allowing for the fusion of noise features from both scales. The combined features are then input into the decoder for reconstruction, resulting in high-quality infrared images. Experimental results demonstrate that our method effectively denoises composite noise, achieving the best results according to both objective metrics and subjective evaluations. This research method significantly enhances the signal-to-noise ratio of narrowband uncooled infrared images, demonstrating substantial application potential in fields such as industrial hazardous gas detection, remote sensing imaging, and medical imaging.

摘要

非制冷红外成像系统在工业有害气体泄漏检测方面具有巨大潜力。然而,使用窄带滤光片来匹配气体光谱吸收峰,会导致非制冷红外相机捕获的入射能量水平较低。这会产生固定模式噪声和高斯噪声的混合,而现有的非制冷红外图像去噪方法难以有效处理这种混合噪声,严重阻碍了实际气体泄漏羽状物的提取和识别。本文提出了一种专门为窄带非制冷红外图像设计的UNet结构双编码器去噪网络。基于高斯随机噪声和行列条纹噪声的不同特性,我们开发了一个基本尺度残差注意力(BSRA)编码器和一个扩大尺度残差注意力(ESRA)编码器。这两个编码器分支在不同感受野上执行噪声感知和编码,实现两种尺度噪声特征的融合。然后将融合后的特征输入解码器进行重建,从而得到高质量的红外图像。实验结果表明,我们的方法能够有效去除复合噪声,在客观指标和主观评价方面均取得了最佳效果。该研究方法显著提高了窄带非制冷红外图像的信噪比,在工业有害气体检测、遥感成像和医学成像等领域展现出巨大的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e99/11902428/6febdc6a7012/sensors-25-01476-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验