Suppr超能文献

基于结构信息感知的红外图像条纹噪声去除正则化模型

Structural-information-awareness-based regularization model for infrared image stripe noise removal.

作者信息

Zhang He, Qian Weixian, Xu Yinghui, Zhang Kaimin, Kong Xiaofang, Wan Minjie

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2024 Sep 1;41(9):1723-1737. doi: 10.1364/JOSAA.525522.

Abstract

Infrared images play a crucial role in military reconnaissance, security monitoring, fire detection, and other tasks. However, due to the physical limitations of detectors, an infrared image often suffers from significant stripe noise. The presence of stripe noise significantly degrades image quality and subsequent processing, making the removal of such noise indispensable. In this study, we propose, to our knowledge, a novel low-rank decomposition model to separate the stripe noise components in infrared images. In comparison with existing algorithms for removing infrared stripe noise, our method takes into account the distinctiveness between stripe noise and information components. For the stripe noise component, we describe a column gradient domain low-rank prior and standard deviation weighted group sparsity prior. For the image information component, we employ a structure-aware gradient sparsity prior to suppress stripes while preserving the structural features of images. During the iterative solution process, we utilize both an initial solution based on minimizing column differences and an iteration step-size strategy based on variable acceleration to accelerate convergence. To validate the effectiveness of our proposed method, we conduct experiments to compare it with other destriping algorithms, demonstrating the superiority of our method from the perspectives of both subjective evaluation and objective metrics.

摘要

红外图像在军事侦察、安全监控、火灾探测等任务中发挥着至关重要的作用。然而,由于探测器的物理限制,红外图像常常受到严重的条纹噪声影响。条纹噪声的存在显著降低了图像质量和后续处理效果,因此去除此类噪声必不可少。在本研究中,据我们所知,我们提出了一种新颖的低秩分解模型来分离红外图像中的条纹噪声成分。与现有的去除红外条纹噪声的算法相比,我们的方法考虑了条纹噪声与信息成分之间的差异。对于条纹噪声成分,我们描述了一种列梯度域低秩先验和标准差加权组稀疏先验。对于图像信息成分,我们采用结构感知梯度稀疏先验来抑制条纹,同时保留图像的结构特征。在迭代求解过程中,我们既利用基于最小化列差异的初始解,又采用基于可变加速的迭代步长策略来加速收敛。为了验证我们提出的方法的有效性,我们进行了实验,将其与其他去条纹算法进行比较,从主观评价和客观指标两个角度证明了我们方法的优越性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验