Suppr超能文献

使用带有期望最大化算法的非参数模型同时去除条纹和图像去噪

Simultaneous Destriping and Image Denoising Using a Nonparametric Model With the EM Algorithm.

作者信息

Song Lingfei, Huang Hua

出版信息

IEEE Trans Image Process. 2023;32:1065-1077. doi: 10.1109/TIP.2023.3239193. Epub 2023 Feb 3.

Abstract

Digital images often suffer from the common problem of stripe noise due to the inconsistent bias of each column. The existence of the stripe poses much more difficulties on image denoising since it requires another ${n}$ parameters, where ${n}$ is the width of the image, to characterize the total interference of the observed image. This paper proposes a novel EM-based framework for simultaneous stripe estimation and image denoising. The great benefit of the proposed framework is that it splits the overall destriping and denoising problem into two independent sub-problems, i.e., calculating the conditional expectation of the true image given the observation and the estimated stripe from the last round of iteration, and estimating the column means of the residual image, such that a Maximum Likelihood Estimation (MLE) is guaranteed and it does not require any explicit parametric modeling of image priors. The calculation of the conditional expectation is the key, here we choose a modified Non-Local Means algorithm to calculate the conditional expectation because it has been proven to be a consistent estimator under some conditions. Besides, if we relax the consistency requirement, the conditional expectation could be interpreted as a general image denoiser. Therefore other state-of-the-art image denoising algorithms have the potentials to be incorporated into the proposed framework. Extensive experiments have demonstrated the superior performance of the proposed algorithm and provide some promising results that motivate future research on the EM-based destriping and denoising framework.

摘要

由于每列的偏置不一致,数字图像常常受到条纹噪声这一常见问题的困扰。条纹的存在给图像去噪带来了更多困难,因为它需要另外(n)个参数(其中(n)是图像的宽度)来表征观测图像的总干扰。本文提出了一种基于期望最大化(EM)的新颖框架,用于同时进行条纹估计和图像去噪。所提出框架的最大优点在于,它将整体的去条纹和去噪问题分解为两个独立的子问题,即计算给定观测值和上一轮迭代估计出的条纹时真实图像的条件期望,以及估计残差图像的列均值,从而保证了最大似然估计(MLE),并且不需要对图像先验进行任何显式的参数建模。条件期望的计算是关键,这里我们选择一种改进的非局部均值算法来计算条件期望,因为它在某些条件下已被证明是一种一致估计器。此外,如果放宽一致性要求,条件期望可以被解释为一种通用的图像去噪器。因此,其他先进的图像去噪算法有可能被纳入所提出的框架。大量实验证明了所提算法的卓越性能,并提供了一些有前景的结果,为基于EM的去条纹和去噪框架的未来研究提供了动力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验