用于定量 MRI 参数估计的偏置降低神经网络。

Bias-reduced neural networks for parameter estimation in quantitative MRI.

机构信息

Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.

Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.

出版信息

Magn Reson Med. 2024 Oct;92(4):1638-1648. doi: 10.1002/mrm.30135. Epub 2024 May 4.

Abstract

PURPOSE

To develop neural network (NN)-based quantitative MRI parameter estimators with minimal bias and a variance close to the Cramér-Rao bound.

THEORY AND METHODS

We generalize the mean squared error loss to control the bias and variance of the NN's estimates, which involves averaging over multiple noise realizations of the same measurements during training. Bias and variance properties of the resulting NNs are studied for two neuroimaging applications.

RESULTS

In simulations, the proposed strategy reduces the estimates' bias throughout parameter space and achieves a variance close to the Cramér-Rao bound. In vivo, we observe good concordance between parameter maps estimated with the proposed NNs and traditional estimators, such as nonlinear least-squares fitting, while state-of-the-art NNs show larger deviations.

CONCLUSION

The proposed NNs have greatly reduced bias compared to those trained using the mean squared error and offer significantly improved computational efficiency over traditional estimators with comparable or better accuracy.

摘要

目的

开发基于神经网络(NN)的定量 MRI 参数估计器,使其具有最小偏差和接近克拉美-罗界的方差。

理论和方法

我们将均方误差损失推广到控制 NN 估计的偏差和方差,这涉及在训练过程中对相同测量的多个噪声实现进行平均。针对两个神经影像学应用研究了由此产生的 NN 的偏差和方差特性。

结果

在模拟中,所提出的策略在整个参数空间中减少了估计值的偏差,并达到了接近克拉美-罗界的方差。在体内,我们观察到使用所提出的 NN 估计的参数图与传统估计器(例如非线性最小二乘拟合)之间具有良好的一致性,而最先进的 NN 则显示出更大的偏差。

结论

与使用均方误差训练的 NN 相比,所提出的 NN 具有大大降低的偏差,并提供了比传统估计器更高的计算效率,而传统估计器具有可比或更好的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索