Zhang Xiaohan, Mukherjee Arghya, Halassa Michael M, Chen Zhe Sage
Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, MA, USA.
Nat Commun. 2025 Mar 18;16(1):2640. doi: 10.1038/s41467-025-58011-1.
The mediodorsal (MD) thalamus is a critical partner for the prefrontal cortex (PFC) in cognitive control. Accumulating evidence has shown that the MD regulates task uncertainty in decision making and enhance cognitive flexibility. However, the computational mechanism of this cognitive process remains unclear. Here we trained biologically-constrained computational models to delineate the mechanistic role of MD in context-dependent decision making. We show that the addition of a feedforward MD structure to the recurrent PFC increases robustness to low cueing signal-to-noise ratio, enhances working memory, and enables rapid context switching. Incorporating genetically identified thalamocortical connectivity and interneuron cell types into the model replicates key neurophysiological findings in task-performing animals. Our model reveals computational mechanisms and geometric interpretations of MD in regulating cue uncertainty and context switching to enable cognitive flexibility. Our model makes experimentally testable predictions linking cognitive deficits with disrupted thalamocortical connectivity, prefrontal excitation-inhibition imbalance and dysfunctional inhibitory cell types.
丘脑背内侧核(MD)是前额叶皮质(PFC)在认知控制方面的关键伙伴。越来越多的证据表明,MD调节决策中的任务不确定性并增强认知灵活性。然而,这一认知过程的计算机制仍不清楚。在这里,我们训练了受生物学约束的计算模型,以阐明MD在依赖情境的决策中的机制作用。我们表明,在循环PFC中添加前馈MD结构可提高对低提示信噪比的鲁棒性,增强工作记忆,并实现快速的情境切换。将基因鉴定的丘脑皮质连接性和中间神经元细胞类型纳入模型,可复制任务执行动物中的关键神经生理学发现。我们的模型揭示了MD在调节提示不确定性和情境切换以实现认知灵活性方面的计算机制和几何解释。我们的模型做出了可通过实验验证的预测,将认知缺陷与丘脑皮质连接中断、前额叶兴奋-抑制失衡和功能失调的抑制性细胞类型联系起来。