Xue Xiaohe, Wimmer Ralf D, Halassa Michael M, Chen Zhe Sage
Courant Institute of Mathematical Sciences, New York University, New York, NY, USA.
Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
Cognit Comput. 2023 Jul;15(4):1167-1189. doi: 10.1007/s12559-022-09994-2. Epub 2022 Feb 5.
Prefrontal cortical neurons play essential roles in performing rule-dependent tasks and working memory-based decision making.
Motivated by PFG recordings of task-performing mice, we developed an excitatory-inhibitory spiking recurrent neural network (SRNN) to perform a rule-dependent two-alternative forced choice (2AFC) task. We imposed several important biological constraints onto the SRNN, and adapted spike frequency adaptation (SFA) and SuperSpike gradient methods to train the SRNN efficiently.
The trained SRNN produced emergent rule-specific tunings in single-unit representations, showing rule-dependent population dynamics that resembled experimentally observed data. Under varying test conditions, we manipulated the SRNN parameters or configuration in computer simulations, and we investigated the impacts of rule-coding error, delay duration, recurrent weight connectivity and sparsity, and excitation/inhibition (E/I) balance on both task performance and neural representations.
Overall, our modeling study provides a computational framework to understand neuronal representations at a fine timescale during working memory and cognitive control, and provides new experimentally testable hypotheses in future experiments.
前额叶皮层神经元在执行依赖规则的任务和基于工作记忆的决策中起着至关重要的作用。
受任务执行小鼠的PFG记录启发,我们开发了一种兴奋性-抑制性脉冲递归神经网络(SRNN)来执行依赖规则的二选一强制选择(2AFC)任务。我们对SRNN施加了几个重要的生物学约束,并采用脉冲频率适应(SFA)和SuperSpike梯度方法来有效训练SRNN。
经过训练的SRNN在单单元表征中产生了特定于规则的新兴调谐,显示出类似于实验观察数据的依赖规则的群体动态。在不同的测试条件下,我们在计算机模拟中操纵SRNN参数或配置,并研究了规则编码误差、延迟持续时间、递归权重连接性和稀疏性以及兴奋/抑制(E/I)平衡对任务性能和神经表征的影响。
总体而言,我们的建模研究提供了一个计算框架,以在精细时间尺度上理解工作记忆和认知控制过程中的神经元表征,并为未来实验提供了新的可实验检验的假设。