Suppr超能文献

用于有效基于内容的图像检索的卷积微调阈值自适应增强方法。

Convolutional Fine-Tuned Threshold Adaboost approach for effectual content-based image retrieval.

作者信息

Cep Robert, Elangovan Muniyandy, Ramesh Janjhyam Venkata Naga, Chohan Mandeep Kaur, Verma Amit

机构信息

Department of Machining, Assembly and Engineering Metrology, Faculty of Mechanical Engineering, VSB-Technical University of Ostrava, 70800, Ostrava, Czech Republic.

Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602 105, India.

出版信息

Sci Rep. 2025 Mar 17;15(1):9087. doi: 10.1038/s41598-025-93309-6.

Abstract

Applications for content-based image retrieval (CBIR) are found in a wide range of industries, including e-commerce, multimedia, and healthcare. CBIR is essential for organising and obtaining visual data from massive databases. Traditional techniques frequently fail to extract high-level, relevant information from images, producing retrieval results that are not ideal. This research introduces a novel Convolutional Fine-Tuned Threshold Adaboost (CFTAB) approach that integrates deep learning and machine learning techniques to enhance CBIR performance. This dataset comprises image-based data collected from multiple sources. This image data were pre-processed using Adaptive Histogram Equalization (AHE). The features of localized image data were extracted using VGG16. For an efficient CBIR process, a novel CFTAB approach was introduced. It combines both deep and machine learning (ML) methods in the proposed architecture to improve the excellence of image search. To further improve performance, CFTAB incorporates an improved AB algorithm. This algorithm adjusts the threshold levels dynamically within a robust classifier to optimize training outcomes.

摘要

基于内容的图像检索(CBIR)的应用存在于广泛的行业中,包括电子商务、多媒体和医疗保健。CBIR对于从海量数据库中组织和获取视觉数据至关重要。传统技术常常无法从图像中提取高级别的相关信息,导致检索结果不理想。本研究引入了一种新颖的卷积微调阈值自适应增强(CFTAB)方法,该方法集成了深度学习和机器学习技术以提高CBIR性能。此数据集包含从多个来源收集的基于图像的数据。这些图像数据使用自适应直方图均衡化(AHE)进行了预处理。使用VGG16提取局部图像数据的特征。为了实现高效的CBIR过程,引入了一种新颖的CFTAB方法。它在所提出的架构中结合了深度学习和机器学习(ML)方法,以提高图像搜索的质量。为了进一步提高性能,CFTAB合并了一种改进的AB算法。该算法在一个强大的分类器中动态调整阈值水平,以优化训练结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/598c/11914487/ca666dd9b8a3/41598_2025_93309_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验