Zhang Kai, Qi Shouliang, Cai Jiumei, Zhao Dan, Yu Tao, Yue Yong, Yao Yudong, Qian Wei
College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, 110169, China; Key Laboratory of Intelligent Computing in Medical Image, Ministry of Education, Northeastern University, Shenyang, 110169, China.
Department of Health Medicine, General Hospital of Northern Theater Command, Shenyang, 110003, China; Department of Medical Imaging, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, 110042, China.
Comput Biol Med. 2022 Jan;140:105096. doi: 10.1016/j.compbiomed.2021.105096. Epub 2021 Nov 30.
CT findings of lung cancer and tuberculosis are sometimes similar, potentially leading to misdiagnosis. This study aims to combine deep learning and content-based image retrieval (CBIR) to distinguish lung cancer (LC) from nodular/mass atypical tuberculosis (NMTB) in CT images.
This study proposes CBIR with a convolutional Siamese neural network (CBIR-CSNN). First, the lesion patches are cropped out to compose LC and NMTB datasets and the pairs of two arbitrary patches form a patch-pair dataset. Second, this patch-pair dataset is utilized to train a CSNN. Third, a test patch is treated as a query. The distance between this query and 20 patches in both datasets is calculated using the trained CSNN. The patches closest to the query are used to give the final prediction by majority voting. One dataset of 719 patients is used to train and test the CBIR-CSNN. Another external dataset with 30 patients is employed to verify CBIR-CSNN.
The CBIR-CSNN achieves excellent performance at the patch level with an mAP (Mean Average Precision) of 0.953, an accuracy of 0.947, and an area under the curve (AUC) of 0.970. At the patient level, the CBIR-CSNN correctly predicted all labels. In the external dataset, the CBIR-CSNN has an accuracy of 0.802 and AUC of 0.858 at the patch level, and 0.833 and 0.902 at the patient level.
This CBIR-CSNN can accurately and automatically distinguish LC from NMTB using CT images. CBIR-CSNN has excellent representation capability, compatibility with few-shot learning, and visual explainability.
肺癌和肺结核的CT表现有时相似,可能导致误诊。本研究旨在结合深度学习和基于内容的图像检索(CBIR)技术,在CT图像中区分肺癌(LC)与结节/肿块型非典型肺结核(NMTB)。
本研究提出了一种基于卷积孪生神经网络的CBIR(CBIR-CSNN)。首先,裁剪病变区域以构成LC和NMTB数据集,两个任意区域的配对形成区域对数据集。其次,利用该区域对数据集训练CSNN。第三,将测试区域作为查询。使用训练好的CSNN计算该查询与两个数据集中20个区域之间的距离。最接近查询的区域用于通过多数投票给出最终预测。使用一个包含719例患者的数据集来训练和测试CBIR-CSNN。另一个包含30例患者的外部数据集用于验证CBIR-CSNN。
CBIR-CSNN在区域层面表现出色,平均精度均值(mAP)为0.953,准确率为0.947,曲线下面积(AUC)为0.970。在患者层面,CBIR-CSNN正确预测了所有标签。在外部数据集中,CBIR-CSNN在区域层面的准确率为0.802,AUC为0.858;在患者层面的准确率为0.833,AUC为0.902。
这种CBIR-CSNN能够利用CT图像准确、自动地将LC与NMTB区分开来。CBIR-CSNN具有出色的表征能力、与少样本学习的兼容性以及视觉可解释性。