Suppr超能文献

圆锥角膜加速交联中基于机器学习的进展预测

Machine learning-based progress prediction in accelerated cross-linking for Keratoconus.

作者信息

Wan Qi, Wang Qiong, Wei Ran, Tang Jing, Yin Hongbo, Deng Ying-Ping, Ma Ke

机构信息

Department of Ophthalmology, West China Hospital of Sichuan University, Sichuan Province, Chengdu City, China.

出版信息

Graefes Arch Clin Exp Ophthalmol. 2025 Mar 17. doi: 10.1007/s00417-025-06792-y.

Abstract

BACKGROUND

To analyze corneal topographic and biomechanical parameters in keratoconus patients before undergoing accelerated corneal collagen cross-linking (A-CXL) surgery and use machine learning models to identify prognostic factors for disease progression after treatment.

METHODS

This was a retrospective, single-center study on 95 eyes from 69 keratoconus patients (mean age 21.46 ± 7.07 years) undergoing A-CXL, with 3-22 months follow-up. Corneal tomography (Pentacam) and biomechanical measurements (Corvis ST) were performed at baseline and follow-up visits. Changes in the E-stage were used to define progression. LASSO, XGBoost, and random forest machine learning models were applied to identify prognostic factors. A nomogram was developed to predict progression probabilities.

RESULTS

42.1% of eyes showed progression based on E-stage change. Maximal keratometry (Kmax) and index of surface variance (ISV) were significantly higher in the progression group. The nomogram incorporating Kmax and ISV predicted progression better than individual parameters. The progression rate was 51.4% in high-risk eyes versus 16% in low-risk eyes stratified by the nomogram.

CONCLUSIONS

Kmax and ISV are important prognostic factors for keratoconus progression after A-CXL. The nomogram can improve prediction accuracy compared to single parameters. It enables personalized risk assessment to guide treatment decisions.

摘要

背景

分析圆锥角膜患者在接受加速角膜胶原交联(A-CXL)手术前的角膜地形图和生物力学参数,并使用机器学习模型识别治疗后疾病进展的预后因素。

方法

这是一项回顾性单中心研究,纳入了69例圆锥角膜患者(平均年龄21.46±7.07岁)的95只眼睛,这些眼睛接受了A-CXL手术,并进行了3至22个月的随访。在基线和随访时进行角膜断层扫描(Pentacam)和生物力学测量(Corvis ST)。用E期的变化来定义疾病进展。应用套索回归、极端梯度提升(XGBoost)和随机森林机器学习模型来识别预后因素。绘制了列线图以预测进展概率。

结果

基于E期变化,42.1%的眼睛显示有进展。进展组的最大角膜曲率(Kmax)和表面方差指数(ISV)显著更高。纳入Kmax和ISV的列线图比单个参数能更好地预测进展。根据列线图分层,高危眼的进展率为51.4%,而低危眼为16%。

结论

Kmax和ISV是A-CXL术后圆锥角膜进展的重要预后因素。与单个参数相比,列线图可以提高预测准确性。它能够进行个性化风险评估以指导治疗决策。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验