Rojas-Carabali William, Cifuentes-González Carlos, Utami Anna, Agarwal Manisha, Kempen John H, Tsui Edmund, Finger Robert P, Sen Alok, Chan Anita, Schlaen Ariel, Gupta Vishali, de-la-Torre Alejandra, Lee Bernett, Agrawal Rupesh
Programme for Ocular Inflammation & Infection Translational Research, Department of Ophthalmology, National Healthcare Group Eye Institute, Tan Tock Seng Hospital, Singapore, Singapore.
Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
Invest Ophthalmol Vis Sci. 2025 Aug 1;66(11):67. doi: 10.1167/iovs.66.11.67.
We developed and evaluated machine learning models for predicting the risk of recurrent uveitis using baseline clinical characteristics, to inform clinical decision-making and risk stratification.
A retrospective analysis was conducted using the Ocular Autoimmune Systemic Inflammatory Infectious Study registry, including 966 patients (1432 eyes) with uveitis. Three machine learning classifiers-random Forest, eXtreme Gradient Boosting, and radial basis function support vector classifier-were trained on preprocessed baseline demographic and clinical data. Predictors were selected through bivariate analysis with false discovery rate correction. Models were optimized using grid search with five-fold stratified cross-validation. Performance was evaluated on a hold-out test set using accuracy, sensitivity, specificity, area under the receiver operating characteristic curve, and Shapley additive explanations values for feature importance.
The random Forest model achieved the highest test accuracy (0.77), with high specificity (0.93) but modest sensitivity (0.44) for identifying recurrences. eXtreme Gradient Boosting and radial basis function support vector classifier showed comparable accuracies (0.73 and 0.74, respectively) but slightly lower sensitivities. Shapley additive explanation analysis identified vitreous haze, retrolental cells, and noninfectious etiology as key predictors. Learning curves indicated that model performance stabilized with the available sample size, suggesting adequate training data.
Machine learning models, particularly random Forest, effectively identified patients at low risk of uveitis recurrence, offering high specificity. However, sensitivity remained limited, highlighting challenges in predicting infrequent events in a heterogeneous disease population.
我们开发并评估了利用基线临床特征预测葡萄膜炎复发风险的机器学习模型,以指导临床决策和风险分层。
使用眼部自身免疫性全身炎症性感染性研究注册库进行回顾性分析,纳入966例葡萄膜炎患者(1432只眼)。在预处理后的基线人口统计学和临床数据上训练三种机器学习分类器——随机森林、极端梯度提升和径向基函数支持向量分类器。通过具有错误发现率校正的双变量分析选择预测因子。使用五折分层交叉验证的网格搜索对模型进行优化。在一个保留测试集上使用准确率、灵敏度、特异度、受试者操作特征曲线下面积以及用于特征重要性的Shapley加性解释值来评估性能。
随机森林模型获得了最高的测试准确率(0.77),在识别复发方面具有高特异度(0.93)但灵敏度适中(0.44)。极端梯度提升和径向基函数支持向量分类器显示出相当的准确率(分别为0.73和0.74),但灵敏度略低。Shapley加性解释分析确定玻璃体混浊、晶状体后细胞和非感染性病因是关键预测因子。学习曲线表明模型性能随着可用样本量稳定下来,表明训练数据充足。
机器学习模型,尤其是随机森林,有效地识别出葡萄膜炎复发风险低的患者,具有高特异度。然而,灵敏度仍然有限,突出了在异质性疾病人群中预测罕见事件的挑战。