Suppr超能文献

基于ResNet的放射组学模型用于预测颈脊髓损伤患者预后的建立与验证

Establishment and validation of a ResNet-based radiomics model for predicting prognosis in cervical spinal cord injury patients.

作者信息

Zhang Zifeng, Li Ning, Ding Yi, Sun Haowei, Cheng Huilin

机构信息

School of Medicine, Southeast University, Nanjing, China.

Department of Neurosurgery, Zhongda Hospital, Southeast University, Nanjing, China.

出版信息

Sci Rep. 2025 Mar 17;15(1):9163. doi: 10.1038/s41598-025-94358-7.

Abstract

Cervical spinal cord injury (cSCI) poses a significant challenge due to the unpredictable nature of recovery, which ranges from mild paralysis to severe long-term disability. Accurate prognostic models are crucial for guiding treatment and rehabilitation but are often limited by their reliance on clinical observations alone. Recent advancements in radiomics and deep learning have shown promise in enhancing prognostic accuracy by leveraging detailed imaging data. However, integrating these imaging features with clinical data remains an underexplored area. This study aims to develop a combined model using imaging and clinical signatures to predict the prognosis of cSCI patients six months post-injury, helping clinical decisions and improving rehabilitation plans. We retrospectively analyzed 168 cSCI patients treated at Zhongda Hospital from January 1, 2018, to June 30, 2023. The retrospective cohort was divided into training (134 patients) and testing sets (34 patients) to construct the model. An additional prospective cohort of 43 cSCI patients treated from July 1, 2023, to November 30, 2023, was used as a validation set. Radiomics features were extracted using Pyradiomics and ResNet deep learning from MR images. Clinical factors such as age, smoking history, drinking history, hypertension, diabetes, cardiovascular disease, traumatic brain injury, injury site, and treatment type were analyzed. The LASSO algorithm selected features for model building. Multiple machine learning models, including SVM, LR, NaiveBayes, KNN, RF, ExtraTrees, XGBoost, LightGBM, GradientBoosting, AdaBoosting, and MLP, were used. Receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA) assessed the models' performance. A nomogram was created to visualize the combined model. In Radiomics models, the SVM classifier achieved the highest area under the curve (AUC) of 1.000 in the training set and 0.915 in the testing set. Age, diabetes, and treatment were found clinical risk factors to develop a clinical model. The combined model, integrating radiomics and clinical features, showed strong performance with AUCs of 1.000 in the training set, 0.952 in the testing set and 0.815 in the validation set. And calibration curves and DCA confirmed the model's accuracy and clinical usefulness. This study shows the potential of a combined radiomics and clinical model to predict the prognosis of cSCI patients.

摘要

颈脊髓损伤(cSCI)由于恢复情况不可预测,带来了重大挑战,其恢复范围从轻度瘫痪到严重的长期残疾。准确的预后模型对于指导治疗和康复至关重要,但往往仅依赖临床观察而受到限制。放射组学和深度学习的最新进展显示,通过利用详细的影像数据有望提高预后准确性。然而,将这些影像特征与临床数据相结合仍是一个未被充分探索的领域。本研究旨在开发一种结合影像和临床特征的模型,以预测cSCI患者伤后6个月的预后,辅助临床决策并改进康复计划。我们回顾性分析了2018年1月1日至2023年6月30日在中大医院接受治疗的168例cSCI患者。将回顾性队列分为训练集(134例患者)和测试集(34例患者)以构建模型。另外选取2023年7月1日至2023年11月30日接受治疗的43例cSCI患者作为前瞻性队列作为验证集。使用Pyradiomics和ResNet深度学习从磁共振图像中提取放射组学特征。分析年龄、吸烟史、饮酒史、高血压、糖尿病、心血管疾病、创伤性脑损伤、损伤部位和治疗类型等临床因素。采用LASSO算法选择用于模型构建的特征。使用了多种机器学习模型,包括支持向量机(SVM)、逻辑回归(LR)、朴素贝叶斯(NaiveBayes)、K近邻(KNN)、随机森林(RF)、极端随机树(ExtraTrees)、XGBoost、LightGBM、梯度提升(GradientBoosting)、自适应提升(AdaBoosting)和多层感知器(MLP)。通过受试者工作特征(ROC)曲线、校准曲线和决策曲线分析(DCA)评估模型性能。创建了列线图以直观展示联合模型。在放射组学模型中,支持向量机分类器在训练集中的曲线下面积(AUC)最高达到1.000,在测试集中为0.915。发现年龄、糖尿病和治疗是建立临床模型的临床风险因素。整合放射组学和临床特征的联合模型表现出色,在训练集中的AUC为1.000,在测试集中为0.952,在验证集中为0.815。校准曲线和决策曲线分析证实了该模型的准确性和临床实用性。本研究显示了联合放射组学和临床模型预测cSCI患者预后的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b129/11914052/b70c1a4d9687/41598_2025_94358_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验