Suppr超能文献

采用综合生物信息学方法进行单细胞RNA测序分析,以鉴定非小细胞肺癌诊断和预后的潜在生物标志物。

Single-cell RNA-seq analysis to identify potential biomarkers for diagnosis, and prognosis of non-small cell lung cancer by using comprehensive bioinformatics approaches.

作者信息

Sultana Adiba, Alam Md Shahin, Liu Xingyun, Sharma Rohit, Singla Rajeev K, Gundamaraju Rohit, Shen Bairong

机构信息

School of Biology and Basic Medical Sciences, Soochow University Medical College, 199 Ren'ai Road, Suzhou 215123, China; Center for Systems Biology, Soochow University, Suzhou 215006, China; Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Xinchuan Road 2222, Chengdu, Sichuan, China.

School of Biology and Basic Medical Sciences, Soochow University Medical College, 199 Ren'ai Road, Suzhou 215123, China.

出版信息

Transl Oncol. 2023 Jan;27:101571. doi: 10.1016/j.tranon.2022.101571. Epub 2022 Nov 16.

Abstract

Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and the leading cause of cancer-related deaths worldwide. Identification of gene biomarkers and their regulatory factors and signaling pathways is very essential to reveal the molecular mechanisms of NSCLC initiation and progression. Thus, the goal of this study is to identify gene biomarkers for NSCLC diagnosis and prognosis by using scRNA-seq data through bioinformatics techniques. scRNA-seq data were obtained from the GEO database to identify DEGs. A total of 158 DEGs (including 48 upregulated and 110 downregulated) were detected after gene integration. Gene Ontology enrichment and KEGG pathway analysis of DEGs were performed by FunRich software. A PPI network of DEGs was then constructed using the STRING database and visualized by Cytoscape software. We identified 12 key genes (KGs) including MS4A1, CCL5, and GZMB, by using two topological methods based on the PPI networking results. The diagnostic, expression, and prognostic potentials of the identified 12 key genes were assessed using the receiver operating characteristics (ROC) curve and a web-based tool, SurvExpress. From the regulatory network analysis, we extracted the 7 key transcription factors (TFs) (FOXC1, YY1, CEBPB, TFAP2A, SREBF2, RELA, and GATA2), and 8 key miRNAs (hsa-miR-124-3p, hsa-miR-34a-5p, hsa-miR-21-5p, hsa-miR-155-5p, hsa-miR-449a, hsa-miR-24-3p, hsa-let-7b-5p, and hsa-miR-7-5p) associated with the KGs were evaluated. Functional enrichment and pathway analysis, survival analysis, ROC analysis, and regulatory network analysis highlighted crucial roles of the key genes. Our findings might play a significant role as candidate biomarkers in NSCLC diagnosis and prognosis.

摘要

非小细胞肺癌(NSCLC)是最常见的肺癌类型,也是全球癌症相关死亡的主要原因。鉴定基因生物标志物及其调控因子和信号通路对于揭示NSCLC发生和发展的分子机制至关重要。因此,本研究的目的是通过生物信息学技术利用单细胞RNA测序(scRNA-seq)数据鉴定用于NSCLC诊断和预后的基因生物标志物。从基因表达综合数据库(GEO数据库)获取scRNA-seq数据以鉴定差异表达基因(DEG)。基因整合后共检测到158个DEG(包括48个上调和110个下调)。使用FunRich软件对DEG进行基因本体富集分析和京都基因与基因组百科全书(KEGG)通路分析。然后使用STRING数据库构建DEG的蛋白质-蛋白质相互作用(PPI)网络,并通过Cytoscape软件进行可视化。基于PPI网络结果,使用两种拓扑方法,我们鉴定出12个关键基因(KG),包括跨膜4域A1蛋白(MS4A1)、趋化因子配体5(CCL5)和颗粒酶B(GZMB)。使用受试者工作特征(ROC)曲线和基于网络的工具SurvExpress评估所鉴定的12个关键基因的诊断、表达和预后潜力。通过调控网络分析,我们提取了7个关键转录因子(TF)(叉头框C1蛋白(FOXC1)、阴阳1蛋白(YY1)、CCAAT增强子结合蛋白β(CEBPB)、转录因子AP-2α(TFAP2A)、固醇调节元件结合转录因子2(SREBF2)、核因子κB亚基p65(RELA)和GATA结合蛋白2(GATA2)),并评估了与这些关键基因相关的8个关键微小RNA(miRNA)(人miR-124-3p、人miR-34a-5p、人miR-21-5p、人miR-155-5p、人miR-449a、人miR-24-3p、人let-7b-5p和人miR-7-5p)。功能富集和通路分析、生存分析、ROC分析以及调控网络分析突出了关键基因的重要作用。我们的研究结果可能作为NSCLC诊断和预后的候选生物标志物发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70c9/9676382/c77b8dd90f86/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验