Suppr超能文献

一种用于多模态忆阻神经网络的新型预定义时间投影同步策略。

A novel predefined-time projective synchronization strategy for multi-modal memristive neural networks.

作者信息

Zhao Hui, Zhou Lei, Liu Aidi, Niu Sijie, Gao Xizhan, Zong Xiju, Li Xin, Li Lixiang

机构信息

Shandong Provincial Key Laboratory of Network Based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, 250022 China.

Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center (National Supercomputer Center in Jinan), Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014 China.

出版信息

Cogn Neurodyn. 2025 Dec;19(1):50. doi: 10.1007/s11571-025-10234-0. Epub 2025 Mar 15.

Abstract

Due to its complexity, the problem of predefined-time synchronization in multimodal memristive neural networks has rarely been explored in the literature. This paper is the first to systematically study this issue, filling a research gap in the field and further enriching the related theoretical framework. First, a novel predefined-time stability theorem is proposed, which features more lenient judgment conditions compared to existing methods. This significantly enhances the generality of the stability theorem, making it applicable to a wider range of practical engineering projects. Second, based on the proposed predefined-time stability theorem, as well as the theories of differential inclusion, Filippov solutions, and set-valued mapping, a simple and practical feedback controller is developed. This controller establishes the necessary criteria for achieving predefined-time projective synchronization in multimodal memristive neural networks. Finally, two intricate simulation experiments are carefully designed. These experiments validate the effectiveness and feasibility of the theoretical derivations presented in this paper.

摘要

由于其复杂性,多模态忆阻神经网络中的预定义时间同步问题在文献中很少被探讨。本文首次系统地研究了这个问题,填补了该领域的研究空白,并进一步丰富了相关理论框架。首先,提出了一个新颖的预定义时间稳定性定理,与现有方法相比,其具有更宽松的判断条件。这显著提高了稳定性定理的通用性,使其适用于更广泛的实际工程项目。其次,基于所提出的预定义时间稳定性定理,以及微分包含、菲利波夫解和集值映射理论,开发了一种简单实用的反馈控制器。该控制器为在多模态忆阻神经网络中实现预定义时间投影同步建立了必要的准则。最后,精心设计了两个复杂的仿真实验。这些实验验证了本文理论推导的有效性和可行性。

相似文献

1
A novel predefined-time projective synchronization strategy for multi-modal memristive neural networks.
Cogn Neurodyn. 2025 Dec;19(1):50. doi: 10.1007/s11571-025-10234-0. Epub 2025 Mar 15.
2
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
3
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.
JBI Database System Rev Implement Rep. 2016 Apr;14(4):96-137. doi: 10.11124/JBISRIR-2016-1843.
4
Differently different?: A commentary on the emerging social cognitive neuroscience of female autism.
Biol Sex Differ. 2024 Jun 13;15(1):49. doi: 10.1186/s13293-024-00621-3.
5
Home treatment for mental health problems: a systematic review.
Health Technol Assess. 2001;5(15):1-139. doi: 10.3310/hta5150.
6
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
7
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
8
The Lived Experience of Autistic Adults in Employment: A Systematic Search and Synthesis.
Autism Adulthood. 2024 Dec 2;6(4):495-509. doi: 10.1089/aut.2022.0114. eCollection 2024 Dec.
9
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.

本文引用的文献

1
Event-based fixed-time synchronization of neural networks under DoS attack and its applications.
Neural Netw. 2023 Sep;166:622-633. doi: 10.1016/j.neunet.2023.07.046. Epub 2023 Aug 1.
4
Synchronization of Stochastic Neural Networks Using Looped-Lyapunov Functional and Its Application to Secure Communication.
IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):5198-5210. doi: 10.1109/TNNLS.2022.3202799. Epub 2024 Apr 4.
6
Necessary conditions for STDP-based pattern recognition learning in a memristive spiking neural network.
Neural Netw. 2021 Feb;134:64-75. doi: 10.1016/j.neunet.2020.11.005. Epub 2020 Nov 27.
7
Fixed/Preassigned-Time Synchronization of Complex Networks via Improving Fixed-Time Stability.
IEEE Trans Cybern. 2021 Jun;51(6):2882-2892. doi: 10.1109/TCYB.2020.2977934. Epub 2021 May 18.
8
The missing memristor found.
Nature. 2008 May 1;453(7191):80-3. doi: 10.1038/nature06932.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验