Cechanaviciute Ieva A, Schuhmann Wolfgang
Analytical Chemistry - Center for Electrochemical Sciences (CES), Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstr. 150, D-44780, Bochum, Germany.
ChemSusChem. 2025 May 19;18(10):e202402516. doi: 10.1002/cssc.202402516. Epub 2025 Mar 28.
Ammonia (NH) plays a pivotal role as a hydrogen carrier, offering a carbon-free energy alternative for sustainable energy systems. The ammonia electrooxidation reaction (AmOR) emerges as a promising avenue to leverage NH₃ in energy conversion and environmental applications. This review explores the multifaceted importance of NH oxidation through three primary strategies: its integration into fuel cell technology for clean energy generation, its use in wastewater treatment for ammonia removal, and its application in electrolyzer setups for producing value-added products. Special emphasis is placed on oxidizing NH to nitrite (NO ) and nitrate (NO ) in electrolyzers as a potential alternative to the energy-intensive Ostwald process. The review highlights recent advances in catalyst development for efficient NO /NO synthesis, the influence of the pH on reaction selectivity, and various reported experimental AmOR solutions. By addressing these critical aspects, this work aims to underscore the potential of NH oxidation in electrolyzers for sustainable energy solutions. Potential future research directions and challenges are also discussed.
氨(NH₃)作为一种氢载体发挥着关键作用,为可持续能源系统提供了一种无碳能源替代方案。氨电氧化反应(AmOR)成为在能量转换和环境应用中利用NH₃的一条有前景的途径。本综述通过三种主要策略探讨了NH₃氧化的多方面重要性:将其整合到燃料电池技术中用于清洁能源生产,用于废水处理以去除氨,以及应用于电解槽装置中以生产增值产品。特别强调了在电解槽中将NH₃氧化为亚硝酸盐(NO₂⁻)和硝酸盐(NO₃⁻),作为能源密集型奥斯特瓦尔德法的一种潜在替代方法。该综述突出了高效NO₂⁻/NO₃⁻合成催化剂开发的最新进展、pH对反应选择性的影响以及各种报道的实验性氨电氧化反应解决方案。通过阐述这些关键方面,这项工作旨在强调电解槽中NH₃氧化在可持续能源解决方案方面的潜力。还讨论了潜在的未来研究方向和挑战。