Suppr超能文献

使用优化的nnU-Net模型对超低剂量CT图像进行基于深度学习的分割。

Deep learning-based segmentation of ultra-low-dose CT images using an optimized nnU-Net model.

作者信息

Salimi Yazdan, Mansouri Zahra, Sun Chang, Sanaat Amirhossein, Yazdanpanah Mohammadhossein, Shooli Hossein, Nkoulou René, Boudabbous Sana, Zaidi Habib

机构信息

Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.

School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China.

出版信息

Radiol Med. 2025 May;130(5):723-739. doi: 10.1007/s11547-025-01989-x. Epub 2025 Mar 18.

Abstract

PURPOSE

Low-dose CT protocols are widely used for emergency imaging, follow-ups, and attenuation correction in hybrid PET/CT and SPECT/CT imaging. However, low-dose CT images often suffer from reduced quality depending on acquisition and patient attenuation parameters. Deep learning (DL)-based organ segmentation models are typically trained on high-quality images, with limited dedicated models for noisy CT images. This study aimed to develop a DL pipeline for organ segmentation on ultra-low-dose CT images.

MATERIALS AND METHODS

274 CT raw datasets were reconstructed using Siemens ReconCT software with ADMIRE iterative algorithm, generating full-dose (FD-CT) and simulated low-dose (LD-CT) images at 1%, 2%, 5%, and 10% of the original tube current. Existing FD-nnU-Net models segmented 22 organs on FD-CT images, serving as reference masks for training new LD-nnU-Net models using LD-CT images. Three models were trained for bony tissue (6 organs), soft-tissue (15 organs), and body contour segmentation. The segmented masks from LD-CT were compared to FD-CT as standard of reference. External datasets with actual LD-CT images were also segmented and compared.

RESULTS

FD-nnU-Net performance declined with reduced radiation dose, especially below 10% (5 mAs). LD-nnU-Net achieved average Dice scores of 0.937 ± 0.049 (bony tissues), 0.905 ± 0.117 (soft-tissues), and 0.984 ± 0.023 (body contour). LD models outperformed FD models on external datasets.

CONCLUSION

Conventional FD-nnU-Net models performed poorly on LD-CT images. Dedicated LD-nnU-Net models demonstrated superior performance across cross-validation and external evaluations, enabling accurate segmentation of ultra-low-dose CT images. The trained models are available on our GitHub page.

摘要

目的

低剂量CT协议广泛应用于急诊成像、随访以及PET/CT和SPECT/CT混合成像中的衰减校正。然而,低剂量CT图像的质量常常会因采集和患者衰减参数而降低。基于深度学习(DL)的器官分割模型通常是在高质量图像上进行训练的,针对噪声CT图像的专用模型有限。本研究旨在开发一种用于超低剂量CT图像器官分割的DL流程。

材料与方法

使用西门子ReconCT软件和ADMIRE迭代算法重建274个CT原始数据集,生成相当于原始管电流1%、2%、5%和10%的全剂量(FD-CT)和模拟低剂量(LD-CT)图像。现有的FD-nnU-Net模型在FD-CT图像上分割22个器官,作为使用LD-CT图像训练新的LD-nnU-Net模型的参考掩码。针对骨组织(6个器官)、软组织(15个器官)和身体轮廓分割训练了三种模型。将LD-CT分割的掩码与作为参考标准的FD-CT进行比较。还对具有实际LD-CT图像的外部数据集进行了分割和比较。

结果

随着辐射剂量降低,FD-nnU-Net的性能下降,尤其是在低于10%(5 mAs)时。LD-nnU-Net在骨组织(平均Dice分数为0.937±0.049)、软组织(0.905±0.117)和身体轮廓(0.984±0.023)方面取得了平均Dice分数。在外部数据集上,LD模型优于FD模型。

结论

传统的FD-nnU-Net模型在LD-CT图像上表现不佳。专用的LD-nnU-Net模型在交叉验证和外部评估中表现出卓越性能,能够对超低剂量CT图像进行准确分割。训练好的模型可在我们的GitHub页面上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1110/12106562/c30810b617f6/11547_2025_1989_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验