Salimi Yazdan, Mansouri Zahra, Sun Chang, Sanaat Amirhossein, Yazdanpanah Mohammadhossein, Shooli Hossein, Nkoulou René, Boudabbous Sana, Zaidi Habib
Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.
School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China.
Radiol Med. 2025 May;130(5):723-739. doi: 10.1007/s11547-025-01989-x. Epub 2025 Mar 18.
Low-dose CT protocols are widely used for emergency imaging, follow-ups, and attenuation correction in hybrid PET/CT and SPECT/CT imaging. However, low-dose CT images often suffer from reduced quality depending on acquisition and patient attenuation parameters. Deep learning (DL)-based organ segmentation models are typically trained on high-quality images, with limited dedicated models for noisy CT images. This study aimed to develop a DL pipeline for organ segmentation on ultra-low-dose CT images.
274 CT raw datasets were reconstructed using Siemens ReconCT software with ADMIRE iterative algorithm, generating full-dose (FD-CT) and simulated low-dose (LD-CT) images at 1%, 2%, 5%, and 10% of the original tube current. Existing FD-nnU-Net models segmented 22 organs on FD-CT images, serving as reference masks for training new LD-nnU-Net models using LD-CT images. Three models were trained for bony tissue (6 organs), soft-tissue (15 organs), and body contour segmentation. The segmented masks from LD-CT were compared to FD-CT as standard of reference. External datasets with actual LD-CT images were also segmented and compared.
FD-nnU-Net performance declined with reduced radiation dose, especially below 10% (5 mAs). LD-nnU-Net achieved average Dice scores of 0.937 ± 0.049 (bony tissues), 0.905 ± 0.117 (soft-tissues), and 0.984 ± 0.023 (body contour). LD models outperformed FD models on external datasets.
Conventional FD-nnU-Net models performed poorly on LD-CT images. Dedicated LD-nnU-Net models demonstrated superior performance across cross-validation and external evaluations, enabling accurate segmentation of ultra-low-dose CT images. The trained models are available on our GitHub page.
低剂量CT协议广泛应用于急诊成像、随访以及PET/CT和SPECT/CT混合成像中的衰减校正。然而,低剂量CT图像的质量常常会因采集和患者衰减参数而降低。基于深度学习(DL)的器官分割模型通常是在高质量图像上进行训练的,针对噪声CT图像的专用模型有限。本研究旨在开发一种用于超低剂量CT图像器官分割的DL流程。
使用西门子ReconCT软件和ADMIRE迭代算法重建274个CT原始数据集,生成相当于原始管电流1%、2%、5%和10%的全剂量(FD-CT)和模拟低剂量(LD-CT)图像。现有的FD-nnU-Net模型在FD-CT图像上分割22个器官,作为使用LD-CT图像训练新的LD-nnU-Net模型的参考掩码。针对骨组织(6个器官)、软组织(15个器官)和身体轮廓分割训练了三种模型。将LD-CT分割的掩码与作为参考标准的FD-CT进行比较。还对具有实际LD-CT图像的外部数据集进行了分割和比较。
随着辐射剂量降低,FD-nnU-Net的性能下降,尤其是在低于10%(5 mAs)时。LD-nnU-Net在骨组织(平均Dice分数为0.937±0.049)、软组织(0.905±0.117)和身体轮廓(0.984±0.023)方面取得了平均Dice分数。在外部数据集上,LD模型优于FD模型。
传统的FD-nnU-Net模型在LD-CT图像上表现不佳。专用的LD-nnU-Net模型在交叉验证和外部评估中表现出卓越性能,能够对超低剂量CT图像进行准确分割。训练好的模型可在我们的GitHub页面上获取。