Salimi Yazdan, Mansouri Zahra, Nkoulou René, Mainta Ismini, Zaidi Habib
Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.
Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
J Imaging Inform Med. 2025 May 6. doi: 10.1007/s10278-025-01528-0.
Quantitative cardiovascular PET/CT imaging is useful in the diagnosis of multiple cardiac perfusion and motion pathologies. The common approach for cardiac segmentation consists in using co-registered CT images, exploiting publicly available deep learning (DL)-based segmentation models. However, the mismatch between structural CT images and PET uptake limits the usefulness of these approaches. Besides, the performance of DL models is not consistent over low-dose or ultra-low-dose CT images commonly used in clinical PET/CT imaging. In this work, we developed a DL-based methodology to tackle this issue by segmenting directly cardiac PET images. This study included 406 cardiac PET images from 146 patients (43 F-FDG, 329 N-NH, and 37 Rb images). Using previously trained DL nnU-Net models in our group, we segmented the whole heart and the three main cardiac components, namely the left myocardium (LM), left ventricle cavity (LV), and right ventricle (RV) on co-registered CT images. The segmentation was resampled to PET resolution and edited through a combination of automated image processing and manual correction. The corrected segmentation masks and SUV PET images were fed to a nnU-Net V2 pipeline to be trained in fivefold data split strategy by defining two tasks: task #1 for whole cardiac segmentation and task #2 for segmentation of three cardiac components. Fifteen cardiac images were used as external validation set. The DL delineated masks were compared with standard of reference masks using Dice coefficient, Jaccard distance, mean surface distance, and segment volume relative error (%). Task #1 average Dice coefficient in internal validation fivefold was 0.932 ± 0.033. The average Dice on the 15 external cases were comparable with the fivefold Dice reaching an average of 0.941 ± 0.018. Task #2 average Dice in fivefold validation was 0.88 ± 0.063, 0.828 ± 0.091, and 0.876 ± 0.062 for LM, LV, and RV, respectively. There was no statistically significant difference among the Dice coefficients, neither between images acquired by three radiotracers nor between the different folds (P-values > > 0.05). The overall average volume prediction error in cardiac components segmentation was less than 2%. We developed an automated DL-based segmentation pipeline to segment the whole heart and cardiac components with acceptable accuracy and robust performance in the external test set and over three radiotracers used in nuclear cardiovascular imaging. The proposed methodology can overcome unreliable segmentations performed on CT images.
定量心血管PET/CT成像在多种心脏灌注和运动病理学诊断中很有用。心脏分割的常见方法是使用配准的CT图像,并利用公开可用的基于深度学习(DL)的分割模型。然而,结构CT图像与PET摄取之间的不匹配限制了这些方法的实用性。此外,DL模型在临床PET/CT成像中常用的低剂量或超低剂量CT图像上的性能并不一致。在这项工作中,我们开发了一种基于DL的方法,通过直接分割心脏PET图像来解决这个问题。本研究纳入了146例患者的406张心脏PET图像(43张F-FDG图像、329张N-NH图像和37张Rb图像)。我们使用之前在我们团队中训练的DL nnU-Net模型,在配准的CT图像上分割整个心脏和三个主要心脏成分,即左心肌(LM)、左心室腔(LV)和右心室(RV)。分割结果被重新采样到PET分辨率,并通过自动图像处理和手动校正相结合的方式进行编辑。将校正后的分割掩码和SUV PET图像输入到nnU-Net V2管道中,通过定义两个任务在五折数据分割策略中进行训练:任务#1用于全心脏分割,任务#2用于三个心脏成分的分割。15张心脏图像用作外部验证集。使用Dice系数(Dice coefficient)、杰卡德距离(Jaccard distance)、平均表面距离(mean surface distance)和分割体积相对误差(%),将DL描绘的掩码与参考标准掩码进行比较。内部验证五折中任务#1的平均Dice系数为0.932±0.033。15个外部病例的平均Dice与五折Dice相当,平均为0.941±0.018。五折验证中任务#2的平均Dice,LM为0.88±0.063,LV为0.828±0.091,RV为0.876±0.062。Dice系数之间没有统计学显著差异,无论是在三种放射性示踪剂采集的图像之间,还是在不同折之间(P值>>0.05)。心脏成分分割中的总体平均体积预测误差小于2%。我们开发了一种基于DL的自动分割管道,以在外部测试集以及核心血管成像中使用的三种放射性示踪剂上,以可接受的准确性和稳健性能分割整个心脏和心脏成分。所提出的方法可以克服在CT图像上进行的不可靠分割。