Estévez Manuel, Batoni Elisa, Cicuéndez Mónica, Bonatti Amedeo Franco, Fernández-Marcelo Tamara, De Maria Carmelo, González Blanca, Izquierdo-Barba Isabel, Vozzi Giovanni
Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Instituto de Investigación Sanitaria, Universidad Complutense de Madrid, Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.
Department of Information Engineering, University of Pisa, Via Girolamo Caruso 16, 56122, Pisa, Italy.
Tissue Eng Regen Med. 2025 Mar 18. doi: 10.1007/s13770-025-00711-2.
Recently, magnetic composite biomaterials have raised attention in bone tissue engineering as the application of dynamic magnetic fields proved to modulate the proliferation and differentiation of several cell types.
This study presents a novel method to fabricate biofunctional magnetic scaffolds by the deposition of superparamagnetic iron oxide nanoparticles (SPIONs) through thermal Drop-On-Demand inkjet printing on three-dimensional (3D) printed scaffolds. Firstly, 3D scaffolds based on thermoplastic polymeric composed by poly-L-lactic acid/poly-caprolactone/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) were fabricated by Fused Deposition Modelling. Then, in a second step, SPIONs were incorporated onto the surface of the scaffolds by inkjet printing following a designed 2D pattern.
A complete characterization of the resulting magnetic scaffolds was carried out attending to the surface SPIONs deposits, demonstrating the accuracy and versatility of the production technique, as well as the stability under physiological conditions and the magnetic properties. Biological evaluation with human bone marrow mesenchymal stems cells demonstrated biocompatibility of the scaffolds and increased osteogenic capability under the application of a magnetic field, due to the activation of mechanotransduction processes.
These results show that the developed 3D magnetic biofunctional scaffolds can be a very promising tool for advanced and personalised bone regeneration treatments.
最近,磁性复合生物材料在骨组织工程中受到关注,因为动态磁场的应用已被证明可调节多种细胞类型的增殖和分化。
本研究提出了一种通过热按需滴液喷墨打印将超顺磁性氧化铁纳米颗粒(SPIONs)沉积在三维(3D)打印支架上来制造生物功能磁性支架的新方法。首先,通过熔融沉积建模制造基于聚-L-乳酸/聚己内酯/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)组成的热塑性聚合物的3D支架。然后,在第二步中,按照设计的二维图案通过喷墨打印将SPIONs掺入支架表面。
根据表面SPIONs沉积物对所得磁性支架进行了全面表征,证明了生产技术的准确性和通用性,以及在生理条件下的稳定性和磁性。用人骨髓间充质干细胞进行的生物学评估表明,由于机械转导过程的激活,支架具有生物相容性,并且在磁场作用下成骨能力增强。
这些结果表明,所开发的3D磁性生物功能支架可能是用于先进和个性化骨再生治疗的非常有前途的工具。