Suppr超能文献

生态瞬时评估数据动态网络分析中的双极与单极标度

Bipolar vs. unipolar scaling in dynamic network analyses of Ecological Momentary Assessment data.

作者信息

Nemani Arwin, Hufschmidt Bettina, Kohl Viktoria, Sendig Lucie, Ebert Mareike, Bonarius Desiree, Hofmann Stefan G, Stangier Ulrich

机构信息

Department of Clinical Psychology and Psychotherapy, Goethe University Frankfurt, Frankfurt am Main, Germany.

Department of Psychology, Philipps-University Marburg, Marburg, Germany.

出版信息

PLoS One. 2025 Mar 18;20(3):e0314102. doi: 10.1371/journal.pone.0314102. eCollection 2025.

Abstract

UNLABELLED

This study examined the statistical and clinical benefits of using bipolar versus unipolar scaling in dynamic network analysis of Ecological Momentary Assessment (EMA) data.

METHODS

Forty-seven students completed EMA reports three times daily for five weeks via either unipolar (n = 24) or bipolar (n = 23) scales. The data were analyzed to construct idiographic network models.

RESULTS

The bipolar scaling group presented significantly lower zero inflation (2.37% vs. 10.31%, U = 2407756, r = 0.75, p < .05) and greater response variability. Network analysis revealed more participants with significant network edges in the bipolar group (69.57% vs. 41.67%, χ²(1) = 12.06, p = .0007). Additionally, the bipolar group had lower odds of zero responses than the unipolar group did (p = .038).

CONCLUSION

Bipolar scaling enhances EMA data quality by reducing zero inflation and increasing variability, resulting in richer dynamic network models. Further research is needed to confirm these findings in clinical populations.

摘要

未标注

本研究检验了在生态瞬时评估(EMA)数据的动态网络分析中使用双极量表与单极量表的统计学和临床益处。

方法

47名学生通过单极量表(n = 24)或双极量表(n = 23),连续五周每天三次完成EMA报告。对数据进行分析以构建个性化网络模型。

结果

双极量表组的零膨胀率显著更低(2.37%对10.31%,U = 2407756,r = 0.75,p < 0.05),且反应变异性更大。网络分析显示双极组中有更多参与者具有显著的网络边(69.57%对41.67%,χ²(1) = 12.06,p = 0.0007)。此外,双极组零反应的几率低于单极组(p = 0.038)。

结论

双极量表通过降低零膨胀率和增加变异性来提高EMA数据质量,从而产生更丰富的动态网络模型。需要进一步研究以在临床人群中证实这些发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d230/11918371/16ff7cc652b4/pone.0314102.g001.jpg

相似文献

本文引用的文献

9
The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.横截面和时间序列数据中的高斯图模型。
Multivariate Behav Res. 2018 Jul-Aug;53(4):453-480. doi: 10.1080/00273171.2018.1454823. Epub 2018 Apr 16.
10
A tutorial on regularized partial correlation networks.正则化偏相关网络教程。
Psychol Methods. 2018 Dec;23(4):617-634. doi: 10.1037/met0000167. Epub 2018 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验