Suppr超能文献

横截面和时间序列数据中的高斯图模型。

The Gaussian Graphical Model in Cross-Sectional and Time-Series Data.

机构信息

a Department of Psychological Methods , University of Amsterdam.

b Department of Psychology , University of Edinburgh.

出版信息

Multivariate Behav Res. 2018 Jul-Aug;53(4):453-480. doi: 10.1080/00273171.2018.1454823. Epub 2018 Apr 16.

Abstract

We discuss the Gaussian graphical model (GGM; an undirected network of partial correlation coefficients) and detail its utility as an exploratory data analysis tool. The GGM shows which variables predict one-another, allows for sparse modeling of covariance structures, and may highlight potential causal relationships between observed variables. We describe the utility in three kinds of psychological data sets: data sets in which consecutive cases are assumed independent (e.g., cross-sectional data), temporally ordered data sets (e.g., n = 1 time series), and a mixture of the 2 (e.g., n > 1 time series). In time-series analysis, the GGM can be used to model the residual structure of a vector-autoregression analysis (VAR), also termed graphical VAR. Two network models can then be obtained: a temporal network and a contemporaneous network. When analyzing data from multiple subjects, a GGM can also be formed on the covariance structure of stationary means-the between-subjects network. We discuss the interpretation of these models and propose estimation methods to obtain these networks, which we implement in the R packages graphicalVAR and mlVAR. The methods are showcased in two empirical examples, and simulation studies on these methods are included in the supplementary materials.

摘要

我们讨论了高斯图形模型(GGM;部分相关系数的无向网络),并详细介绍了它作为探索性数据分析工具的实用性。GGM 显示了哪些变量可以相互预测,允许对协方差结构进行稀疏建模,并可能突出观察变量之间潜在的因果关系。我们在三种类型的心理数据集上描述了其用途:假设连续案例相互独立的数据集(例如,横截面数据)、时间有序数据集(例如,n=1 时间序列)和两者的混合数据集(例如,n>1 时间序列)。在时间序列分析中,GGM 可用于对向量自回归分析(VAR)的残差结构进行建模,也称为图形 VAR。然后可以获得两个网络模型:时间网络和同期网络。当分析来自多个主体的数据时,也可以在静止均值的协方差结构上形成 GGM-主体间网络。我们讨论了这些模型的解释,并提出了获得这些网络的估计方法,我们在 R 包 graphicalVAR 和 mlVAR 中实现了这些方法。该方法在两个实证示例中进行了展示,并在补充材料中包含了对这些方法的模拟研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验