Suppr超能文献

利用生态瞬时评估数据对易怒特质丰富的青少年样本中的发脾气行为进行多变量预测:一项注册报告。

Multivariate prediction of temper outbursts in a sample of youth enriched for irritability using ecological momentary assessment data: A registered report.

作者信息

Saha Dipta, Naim Reut, Pereira Francisco, Brotman Melissa A, Zheng Charles Y

机构信息

Neuroscience and Novel Therapeutics Unit, Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America.

The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel.

出版信息

PLoS One. 2025 Mar 18;20(3):e0289235. doi: 10.1371/journal.pone.0289235. eCollection 2025.

Abstract

Irritability and temper outbursts are among the most common reasons youth are referred for psychiatric assessment and care. Identifying in vivo clinical variables that precede the onset of temper outbursts would provide valuable clinical utility. Here, we provide the rationale for a study testing the performance of a classifier trained to predict temper outbursts in a group of clinically-referred youth presenting with symptoms of irritability and temper outbursts. Due to the large sample sizes needed for multivariate classification studies, here, we demonstrated the feasibility of our approach using a relatively large preliminary dataset. Our preliminary data included digital based event sampling from an existing Ecological Momentary Assessment dataset consisting of n = 54 participants with a total of 932 time points. We used this data to develop a logistic regression-based classifier for predicting the temper outburst prospectively. Our initial evaluation provided encouraging evidence for the possibility of predicting the presence of a temper outburst based on individual's momentary clinical responses (e.g., whether the participant is feeling grouchy, hungry, happy, sad, anxious, tired, etc.) prior to the outburst event, as well as external features (e.g., time of day, day of week). However, due to the risk of false positive discoveries and overfitting, these preliminary results are insufficient to conclusively establish the discovery of predictive rules for irritability in Ecological Momentary Assessment data. To more rigorously assess this classifier, we will collect a large confirmatory set, consisting of at least an additional 20 subjects with an expected total of 400 time points, in which will perform confirmatory analyses of the precision and recall of the classifier already fit using preliminary data. This work will potentially provide the foundation for the identification of features predictive of risk and future development of novel mobile-device-based interventions in youth affected with severe and impairing psychopathology.

摘要

易怒和发脾气是青少年被转介进行精神科评估和治疗的最常见原因之一。识别发脾气发作前的体内临床变量将具有重要的临床实用价值。在此,我们为一项研究提供了理论依据,该研究测试了一个分类器的性能,该分类器经过训练,用于预测一组有易怒和发脾气症状的临床转介青少年的发脾气情况。由于多变量分类研究需要大量样本,在此,我们使用一个相对较大的初步数据集证明了我们方法的可行性。我们的初步数据包括从现有的生态瞬时评估数据集中基于数字的事件抽样,该数据集由n = 54名参与者组成,共有932个时间点。我们使用这些数据开发了一个基于逻辑回归的分类器,用于前瞻性地预测发脾气情况。我们的初步评估提供了令人鼓舞的证据,表明有可能根据个体在发脾气事件之前的瞬时临床反应(例如,参与者是否感到烦躁、饥饿、高兴、悲伤、焦虑、疲惫等)以及外部特征(例如,一天中的时间、一周中的日期)来预测发脾气的发生。然而,由于存在假阳性发现和过度拟合的风险,这些初步结果不足以确凿地确立在生态瞬时评估数据中发现易怒的预测规则。为了更严格地评估这个分类器,我们将收集一个大型验证集,至少包括另外20名受试者,预计共有400个时间点,在其中将对已经使用初步数据拟合的分类器的精度和召回率进行验证分析。这项工作可能为识别预测风险的特征以及为受严重和损害性精神病理学影响的青少年开发新型移动设备干预措施的未来发展奠定基础。

相似文献

2
Understanding Phasic Irritability: Anger and Distress in Children's Temper Outbursts.理解阶段性易怒:儿童发脾气时的愤怒与苦恼
Child Psychiatry Hum Dev. 2022 Apr;53(2):317-329. doi: 10.1007/s10578-021-01126-5. Epub 2021 Feb 6.
5
Preventing Irritability and Temper Outbursts in Youth by Building Resilience.通过培养韧性预防青少年烦躁和脾气爆发。
Child Adolesc Psychiatr Clin N Am. 2021 Jul;30(3):595-610. doi: 10.1016/j.chc.2021.04.009.
8
The Phenomenology of Outbursts.发作的现象学。
Child Adolesc Psychiatr Clin N Am. 2021 Apr;30(2):307-319. doi: 10.1016/j.chc.2020.10.003. Epub 2021 Feb 15.

本文引用的文献

10
Differential outcomes of tonic and phasic irritability in adolescent girls.青少年女性紧张性和阵发性易激惹的不同结局。
J Child Psychol Psychiatry. 2021 Oct;62(10):1220-1227. doi: 10.1111/jcpp.13402. Epub 2021 Mar 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验