Raza Nauman, Irum Shaiza, Niazai Shafiullah, Ullah Muhammad Asad, Alshahrani Mohammad Y, Omame Andrew
Department of Mathematics, University of the Punjab, Lahore, Pakistan.
Department of Mathematics, University of Engineering and Technology, Lahore, Pakistan.
Sci Rep. 2025 Apr 3;15(1):11465. doi: 10.1038/s41598-025-91871-7.
The biological processes involved in diseases like human immunodeficiency virus (HIV) and tuberculosis (TB) require extensive research, particularly when both diseases occur together. This piece of research delves to explore a new fractional-order mathematical model that examines the co-dynamics of HIV and TB, taking into account the treatment effects. Although no definitive vaccine or cure for HIV exists, antiretroviral therapy (ART) can slow disease spread and prevent subsequent complications. The basic properties of the fractional model in the Caputo sense, including existence, uniqueness, positivity, and boundedness, are proved using crucial mathematical tools. The disease-free and endemic equilibria are determined for the co-infection model, along with the basic reproduction numbers [Formula: see text] for TB and [Formula: see text] for HIV, using the next-generation matrix technique. A comprehensive analysis is conducted to determine the local and global stability of the disease-free equilibrium point by applying the Routh-Hurwitz criteria and constructing a Lyapunov function, respectively. The stability of the disease-free state is also verified graphically by considering different initial conditions and observing the convergence of the curves to the disease-free equilibrium point. Furthermore, the model is examined under different scenarios by varying the reproduction numbers, specifically when [Formula: see text] and [Formula: see text], and when [Formula: see text] and [Formula: see text]. Using actual data from the USA from 1999 to 2022, crucial parameters are estimated. The final fitting of the model with real data demonstrates how effectively the model framework aligns with the data. Finally, computational simulations are performed for different cases to illustrate the behavior of the model solutions by varying the fractional order derivative, as well as examining the solution's behavior with respect to the stability points.
人类免疫缺陷病毒(HIV)和结核病(TB)等疾病所涉及的生物学过程需要进行广泛研究,尤其是当这两种疾病同时发生时。这项研究深入探索了一种新的分数阶数学模型,该模型考虑了治疗效果,研究HIV和TB的共同动态。尽管目前尚无针对HIV的确定性疫苗或治愈方法,但抗逆转录病毒疗法(ART)可以减缓疾病传播并预防后续并发症。利用关键的数学工具证明了Caputo意义下分数模型的基本性质,包括存在性、唯一性、正性和有界性。使用下一代矩阵技术确定了共感染模型的无病平衡点和地方病平衡点,以及TB的基本再生数[公式:见正文]和HIV的基本再生数[公式:见正文]。分别应用劳斯 - 赫尔维茨准则和构建李雅普诺夫函数,对无病平衡点的局部和全局稳定性进行了全面分析。通过考虑不同的初始条件并观察曲线向无病平衡点的收敛情况,还以图形方式验证了无病状态的稳定性。此外,通过改变再生数,特别是当[公式:见正文]和[公式:见正文],以及当[公式:见正文]和[公式:见正文]时,在不同场景下对模型进行了研究。利用1999年至2022年美国的实际数据,估计了关键参数。模型与实际数据的最终拟合展示了模型框架与数据的有效契合程度。最后,针对不同情况进行了计算模拟,通过改变分数阶导数来说明模型解的行为,并研究解相对于稳定点的行为。