文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用γ射线合成及表征抗菌性羧甲基纤维素/丙烯酸/氧化锌纳米复合高吸水性树脂

Synthesis and characterization of antibacterial CMC/AAc/ZnO nanocomposite superabsorbent using gamma radiation.

作者信息

Radmehr Mahsa, Poursattar Marjani Ahmad, Akhavan Azam

机构信息

Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.

Radiation Applications Research School, Nuclear Science and Technology Research Institute, P.O. Box 11365-3486, Tehran, Iran.

出版信息

Sci Rep. 2025 Mar 18;15(1):9345. doi: 10.1038/s41598-025-93884-8.


DOI:10.1038/s41598-025-93884-8
PMID:40102668
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11920396/
Abstract

CMC/AAc/ZnO, a novel antimicrobial superabsorbent hydrogel, was prepared via the copolymerization of carboxymethyl cellulose (CMC) and acrylic acid (AAc) by incorporating zinc oxide nanoparticles through gamma radiation. The morphological and structural properties were investigated with the aid of characterization techniques such as scanning electron microscopy (SEM), Fourier-transform infrared (FT-IR), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and thermogravimetric analysis (TGA) and Differential Scanning Calorimetry (DSC) analysis. In addition, the swelling behaviour analysis displayed superior pH-responsive performance in distilled water than in saline solutions. XRD confirmed that the ZnO nanoparticles were present in a crystalline state in the polymer matrix. EDX mapping was also used to study the elemental distribution of ZnO, carbon, and oxygen in the nanocomposite. TGA provided evidence of substantial thermal stability; hence, the strength of the material could be very efficient. Besides, the highly effective antibacterial property of CMC/AAc/ZnO against Escherichia coli is confirmed through different assays, such as leaching and nonleaching tests. Unlike conventional methods, this technique avoids the need for chemical crosslinkers or initiators, as gamma radiation induces polymerization and incorporation of the nanoparticles. The resulting nanocomposite exhibits better swelling capacity, thermal stability, and antibacterial activity against Escherichia coli. Such properties make it a promising and novel candidate for biomedical and environmental applications. This research emphasizes the great possibilities of using CMC/AAc/ZnO nanocomposite superabsorbent polymers for manifold biomedical applications and opens up new pathways in the growth of eco-friendly antibacterial material.

摘要

CMC/AAc/ZnO是一种新型抗菌高吸水性水凝胶,通过羧甲基纤维素(CMC)与丙烯酸(AAc)的共聚反应,并借助γ射线辐照引入氧化锌纳米颗粒制备而成。借助扫描电子显微镜(SEM)、傅里叶变换红外光谱(FT-IR)、能量色散X射线光谱(EDX)、X射线衍射(XRD)、热重分析(TGA)和差示扫描量热法(DSC)等表征技术对其形态和结构性质进行了研究。此外,溶胀行为分析表明,该水凝胶在蒸馏水中的pH响应性能优于在盐溶液中的性能。XRD证实,ZnO纳米颗粒以结晶态存在于聚合物基体中。EDX映射还用于研究纳米复合材料中ZnO、碳和氧的元素分布。TGA提供了材料具有显著热稳定性的证据;因此,该材料的强度可能非常高效。此外,通过浸出和非浸出试验等不同检测方法证实了CMC/AAc/ZnO对大肠杆菌具有高效抗菌性能。与传统方法不同,该技术无需化学交联剂或引发剂,因为γ射线可引发聚合反应并使纳米颗粒掺入。所得纳米复合材料表现出更好的溶胀能力、热稳定性以及对大肠杆菌的抗菌活性。这些特性使其成为生物医学和环境应用中有前景的新型候选材料。本研究强调了使用CMC/AAc/ZnO纳米复合高吸水性聚合物用于多种生物医学应用的巨大可能性,并为生态友好型抗菌材料的发展开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/e72374edb2e0/41598_2025_93884_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/a8c7e72a9d1d/41598_2025_93884_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/44d087f1b2c9/41598_2025_93884_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/257d70a32f83/41598_2025_93884_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/de19c5200cbe/41598_2025_93884_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/19b2a6d28be1/41598_2025_93884_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/1e9e886a087b/41598_2025_93884_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/8046f7b12d71/41598_2025_93884_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/496300310008/41598_2025_93884_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/52197b5489d7/41598_2025_93884_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/5bcf1d78f533/41598_2025_93884_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/7da98c24fd95/41598_2025_93884_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/3123ca4458dd/41598_2025_93884_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/dbaeb9eab1e9/41598_2025_93884_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/e72374edb2e0/41598_2025_93884_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/a8c7e72a9d1d/41598_2025_93884_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/44d087f1b2c9/41598_2025_93884_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/257d70a32f83/41598_2025_93884_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/de19c5200cbe/41598_2025_93884_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/19b2a6d28be1/41598_2025_93884_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/1e9e886a087b/41598_2025_93884_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/8046f7b12d71/41598_2025_93884_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/496300310008/41598_2025_93884_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/52197b5489d7/41598_2025_93884_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/5bcf1d78f533/41598_2025_93884_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/7da98c24fd95/41598_2025_93884_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/3123ca4458dd/41598_2025_93884_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/dbaeb9eab1e9/41598_2025_93884_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/388a/11920396/e72374edb2e0/41598_2025_93884_Fig14_HTML.jpg

相似文献

[1]
Synthesis and characterization of antibacterial CMC/AAc/ZnO nanocomposite superabsorbent using gamma radiation.

Sci Rep. 2025-3-18

[2]
Enhancing the structural and optoelectronic properties of carboxymethyl cellulose sodium filled with ZnO/GO and CuO/GO nanocomposites for antimicrobial packaging applications.

Sci Rep. 2024-12-23

[3]
Synthesis and characterization of antibacterial carboxymethyl cellulose/ZnO nanocomposite hydrogels.

Int J Biol Macromol. 2014-12-15

[4]
A potential bioactive wound dressing based on carboxymethyl cellulose/ZnO impregnated MCM-41 nanocomposite hydrogel.

Mater Sci Eng C Mater Biol Appl. 2017-4-1

[5]
Antibacterial oxidized starch/ZnO nanocomposite hydrogel: Synthesis and evaluation of its swelling behaviours in various pHs and salt solutions.

Int J Biol Macromol. 2018-12-27

[6]
Green and facile synthesis of carboxymethylcellulose/ZnO nanocomposite hydrogels crosslinked with Zn ions.

Int J Biol Macromol. 2020-11-1

[7]
Antimicrobial Carboxymethyl Cellulose-Bacterial Cellulose Composites Loaded with Green Synthesized ZnO and Ag Nanoparticles for Food Packaging.

Int J Mol Sci. 2024-11-30

[8]
Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles.

Carbohydr Polym. 2014-2-10

[9]
Efficient photocatalytic remediation of lerui acid brilliant blue dye using radiation- prepared carboxymethyl cellulose/acrylic acid hydrogel supported by ZnO@Ag.

Int J Biol Macromol. 2024-3

[10]
Physical and mechanical properties of hybrid montmorillonite/zinc oxide reinforced carboxymethyl cellulose nanocomposites.

Int J Biol Macromol. 2017-11-11

引用本文的文献

[1]
Integrated SA-CMC hydrogel formulation with the NAA hormone, ZnO nanoparticles, and potassium chloride: a sustainable approach to enhance flowering and crop yield in the short-term crop chili ().

RSC Adv. 2025-7-2

本文引用的文献

[1]
A Universal Strategy for Constructing Hydrogel Assemblies Enabled by PAA Hydrogel Adhesive.

Small. 2024-10

[2]
Assessing polylactic acid nanofibers with cellulose and chitosan nanocapsules loaded with chamomile extract for treating gram-negative infections.

Sci Rep. 2024-9-27

[3]
A low-swelling alginate hydrogel with antibacterial hemostatic and radical scavenging properties for open wound healing.

Biomed Mater. 2024-9-19

[4]
Semi-IPN polysaccharide-based hydrogels for effective removal of heavy metal ions and dyes from wastewater: a comprehensive investigation of performance and adsorption mechanism.

Rev Environ Health. 2024-9-3

[5]
Bilayer hydrogel with a protective film and a regenerative hydrogel for effective diabetic wound treatment.

Biomater Sci. 2024-9-25

[6]
Defect and Heterostructure engineering assisted S-scheme NbO nanosystems-based solutions for environmental pollution and energy conversion.

Adv Colloid Interface Sci. 2024-10

[7]
Efficient photocatalytic remediation of lerui acid brilliant blue dye using radiation- prepared carboxymethyl cellulose/acrylic acid hydrogel supported by ZnO@Ag.

Int J Biol Macromol. 2024-3

[8]
Bactericidal Activity of Superabsorbent Polymer Granules for Their Applications in Respiratory Fluid Solidification Systems.

ACS Omega. 2023-7-8

[9]
Biogenic green metal nano systems as efficient anti-cancer agents.

Environ Res. 2023-7-15

[10]
Balancing Bacteria-Osteoblast Competition through Selective Physical Puncture and Biofunctionalization of ZnO/Polydopamine/Arginine-Glycine-Aspartic Acid-Cysteine Nanorods.

ACS Nano. 2017-10-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索