Yang Xuchen, He Jiaxian, Zhou Minghui, Bi Changwei, Kong Jiali, Wang Jie, Kong Fanjiang, Wu Zhiqiang, Wang Zefu, Li Meina
Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China.
BMC Plant Biol. 2025 Mar 18;25(1):353. doi: 10.1186/s12870-025-06312-4.
The complexity of structural variations and long stretches of repetitive DNA make the analysis of plant mitochondrial genomes (mitogenomes) exceptionally challenging. A thorough investigation of plant mitogenomes is essential for uncovering the evolutionary processes of plant organelles and optimizing traits related to plant cellular metabolism. The genus Glycine includes groups with both perennial and annual life strategies, making it an ideal subject for studying the complexity and variations of plant mitogenomes during evolution across different life strategies.
Here, we assembled 20 complete mitochondrial and plastid genomes of Glycine accessions, including both annual and perennial species using the latest organelle genome assembly tool. Significant structural variations and differences in tRNA content were observed in the mitogenomes between the two life-history strategy subgenera, while protein-coding genes and rRNAs content were highly conserved. Distinct patterns of nuclear plastid DNAs and nuclear mitochondrial DNAs (NUPTs/NUMTs) were uncovered among annual and perennial species. Genes residing in NUMTs (NUMGs) showed a substantial presence in Glycine accessions, with annual soybeans exhibiting a higher proportion of protein-coding genes fully integrated into the nuclear genome. Phylogenetic analysis indicated a closely related evolutionary trajectory between mitochondrial and nuclear genomes in Glycine, providing supplementary evidence relevant to the evolutionary history of Glycine.
This study showed the structural variations and evolutionary patterns of mitochondrial genomes between annual and perennial Glycine species. These findings contribute to our understanding of plant organelle complexity, variation and history of intracellular genomic integration.
结构变异的复杂性和长片段重复DNA使得植物线粒体基因组(线粒体基因组)的分析极具挑战性。对植物线粒体基因组进行全面研究对于揭示植物细胞器的进化过程以及优化与植物细胞代谢相关的性状至关重要。大豆属包括具有多年生和一年生生活策略的类群,使其成为研究不同生活策略进化过程中植物线粒体基因组的复杂性和变异的理想对象。
在这里,我们使用最新的细胞器基因组组装工具组装了20个大豆种质的完整线粒体和质体基因组,包括一年生和多年生物种。在两种生活史策略亚属的线粒体基因组中观察到显著的结构变异和tRNA含量差异,而蛋白质编码基因和rRNA含量高度保守。在一年生和多年生物种中发现了不同的核质体DNA和核线粒体DNA(NUPTs/NUMTs)模式。存在于NUMTs中的基因(NUMGs)在大豆种质中大量存在,一年生大豆中完全整合到核基因组中的蛋白质编码基因比例更高。系统发育分析表明大豆中线粒体和核基因组之间存在密切相关的进化轨迹,为大豆的进化历史提供了补充证据。
本研究展示了一年生和多年生大豆物种线粒体基因组的结构变异和进化模式。这些发现有助于我们理解植物细胞器的复杂性、变异和细胞内基因组整合的历史。