Fang Caixia, Zhang Lina, Xu Lanlan, He Yongsheng, Zhang Xuerong, Xing Xiaojuan
Department of Pharmacy, Clinical Trial Research Center of Qingyang People's Hospital, Qingyang, Gansu, China.
Clinical Trial Research Center, Qingyang People's Hospital, Qingyang, Gansu, China.
BMC Gastroenterol. 2025 Mar 18;25(1):185. doi: 10.1186/s12876-025-03711-7.
Cholestasis, characterized by impaired bile flow, impacts cognitive function through systemic mechanisms, including inflammation and metabolic dysregulation. Despite its significance, targeted predictive models for cognitive impairment in cholestasis remain underexplored. This study addresses this gap by developing a machine learning-based predictive model tailored to this population.
Clinical and biochemical data from Qingyang People's Hospital (2021-2023) were used to train and validate models for predicting cognitive impairment (MoCA ≤ 17). Recursive feature elimination identified critical predictors, while LightGBM and other machine learning models were evaluated. SHAP analysis enhanced model interpretability, and clinical utility was assessed through decision curve analysis (DCA).
LightGBM outperformed other models with an AUC of 0.7955 on the testing dataset. Age, plasma D-dimer, and albumin were key predictors. SHAP analysis revealed non-linear interactions among features, demonstrating the model's clinical alignment. DCA confirmed its utility in improving patient stratification.
The developed LightGBM-based model effectively predicts cognitive impairment in cholestasis patients, providing actionable insights for early intervention. Integrating this tool into clinical workflows can enhance precision medicine and improve outcomes in this high-risk population.
胆汁淤积以胆汁流动受损为特征,通过包括炎症和代谢失调在内的全身机制影响认知功能。尽管其具有重要意义,但针对胆汁淤积性认知障碍的靶向预测模型仍未得到充分探索。本研究通过开发一种针对该人群的基于机器学习的预测模型来填补这一空白。
利用庆阳市人民医院(2021 - 2023年)的临床和生化数据来训练和验证预测认知障碍(蒙特利尔认知评估量表[MoCA]≤17)的模型。递归特征消除确定了关键预测因素,同时对LightGBM和其他机器学习模型进行了评估。SHAP分析增强了模型的可解释性,并通过决策曲线分析(DCA)评估了临床实用性。
在测试数据集上,LightGBM的表现优于其他模型,曲线下面积(AUC)为0.7955。年龄、血浆D - 二聚体和白蛋白是关键预测因素。SHAP分析揭示了特征之间的非线性相互作用,证明了该模型与临床的一致性。DCA证实了其在改善患者分层方面的实用性。
所开发的基于LightGBM的模型能够有效预测胆汁淤积患者的认知障碍,为早期干预提供了可操作的见解。将该工具整合到临床工作流程中可以提高精准医疗水平,并改善这一高危人群的治疗效果。