利用机器学习算法预测胃肠病住院患者的焦虑-抑郁共病综合征(ADCS-GI)。
Utilizing machine learning algorithms for predicting Anxiety-Depression Comorbidity Syndrome in Gastroenterology Inpatients (ADCS-GI).
作者信息
Tan Min, Zhao Jinjin, Tao Yushun, Sehar Uroosa, Yan Yan, Zou Qian, Liu Qing, Xu Long, Xia Zeyang, Feng Lijuan, Xiong Jing
机构信息
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
University of Chinese Academy of Sciences, Beijing, 101400, China.
出版信息
BMC Psychiatry. 2025 Mar 18;25(1):253. doi: 10.1186/s12888-025-06666-x.
BACKGROUND
Accurately diagnosing Anxiety-Depression Comorbidity Syndrome in Gastroenterology Inpatients (ADCS-GI) shows significant challenges as traditional diagnostic methods fail to meet expectations due to patient hesitance and non-psychiatric healthcare professionals' limitations. Therefore, the need for objective diagnostics highlights the potential of machine learning in identifying and treating ADCS-GI.
METHODS
A total of 1186 ADCS patients were recruited for this study. We conducted extensive studies for the dataset, including data quantification, equilibrium, and correlation analysis. Eight machine learning models, including Gaussian Naive Bayes (NB), Support Vector Classifier (SVC), K-Neighbors Classifier, RandomForest, XGB, CatBoost, Cascade Forest, and Decision Tree, were utilized to compare prediction efficacy, with an effort to minimize the dependency on subjective questionnaires.
RESULTS
Among eight machine learning algorithms, the Decision Tree and K-nearest neighbors models demonstrated an accuracy exceeding 81% and a sensitivity in the same range for detecting ADCS in patients. Notably, when identifying moderate and severe cases, the models achieved an accuracy above 88% and a sensitivity of 90%. Furthermore, the models trained without reliance on subjective questionnaires showed promising performance, indicating the feasibility of developing questionnaire-free early detection applications.
CONCLUSION
Machine learning algorithms can be used to identify ADCS among gastroenterology patients. This can help facilitate the early detection and intervention of psychological disorders in gastroenterology patients' care.
背景
准确诊断胃肠病住院患者的焦虑抑郁共病综合征(ADCS - GI)面临重大挑战,因为传统诊断方法由于患者的犹豫和非精神科医护人员的局限性而未能达到预期。因此,对客观诊断的需求凸显了机器学习在识别和治疗ADCS - GI方面的潜力。
方法
本研究共招募了1186例ADCS患者。我们对数据集进行了广泛研究,包括数据量化、平衡和相关性分析。使用了八种机器学习模型,包括高斯朴素贝叶斯(NB)、支持向量分类器(SVC)、K近邻分类器、随机森林、XGB、CatBoost、级联森林和决策树,来比较预测效果,以尽量减少对主观问卷的依赖。
结果
在八种机器学习算法中,决策树和K近邻模型在检测患者的ADCS时,准确率超过81%,灵敏度在相同范围内。值得注意的是,在识别中度和重度病例时,模型的准确率高于88%,灵敏度为90%。此外,在不依赖主观问卷的情况下训练的模型表现出良好的性能,表明开发无需问卷的早期检测应用是可行的。
结论
机器学习算法可用于识别胃肠病患者中的ADCS。这有助于在胃肠病患者护理中促进心理障碍的早期检测和干预。